Site: West Late LDF ID #: MOD 079900932 Break: 11.6 Vol 3.0 t.4 Other: West Late Ready Mir Co 7-18-91

WECEIVE JUL 22 1991

SAFE SECTION

RESPONSE OF WEST LAKE READY MIX COMPANY

TO

CERCLA 104(e) REQUEST FOR INFORMATION

VOLUME III OF IV

JULY 18, 1991

0714

40054878 &u-DD SUPERFUND RECORDS

4.2

MIX 0004

Radioactive Material in the West Lake Landfill

Summary Report

U.S. Nuclear Regulatory Commission

Office of Nuclear Material Safety and Safeguards

MIX 0004 Exhibit 14-D

NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Room, 1717 H Street, N.W. Washington, DC 20555
- 2. The Superintendent of Documents, U.S. Government Printing Office, Post Office Box 37082, Washington, DC 20013-7082
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. Federal flagister notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Information Support Services, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

Radioactive Material in the West Lake Landfill

Summary Report

Manuscript Completed: February 1988

Date Published: June 1988

Division of Industrial and Medical Nuclear Safety Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555

WASTE MANAGEMENT PROGRAM

ABSTRACT

The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris.

This report summarizes the circumstances of the radioactive material in the West Lake Landfill. The radioactive material resulted from the processing of uranium ores and the subsequent sale by the AEC of processing residues. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. It is concluded that remedial action is called for.

CONTENTS

		Page
ABST		iii
1	INTRODUCTION AND BACKGROUND	1
2	DESCRIPTION OF THE SITE	3
	Location	3
	History	3
	Ownership	3
	Contaminated Areas	5
	Topography	3 5 5 5
	Geology	5
	Hydrology	6
	Demography	7
3	RADIOLOGICAL SURVEYS	7
	External Gamma	8
	Surface Soil Analysis	8
	Subsurface Soil Analysis	9
	Nonradiological Analysis	9
	Background Radioactivity Measurement	9
	Airborne Radioactivity Analysis	10
	Vegetation Analysis	10
	Water Analysis	10
4	ESTIMATION OF RADIOACTIVITY INVENTORY	11
5	APPLICABILITY OF THE BRANCH TECHNICAL POSITION	12
6	REMEDIAL ACTION ALTERNATIVES EXAMINED	13
7	FACTORS CONTRIBUTING UNCERTAINTY	13
8	SUMMARY	14
9	REFERENCES	16

1 INTRODUCTION AND BACKGROUND

This report summarizes the circumstances of the radioactive material in the West Lake Landfill (Figure 1), in particular, the radiological environmental aspects as they relate to potential disposition of the material.

The West Lake Landfill, Inc. property is a 200 acre tract in Bridgeton, St. Louis County, Missouri, on the outskirts of the city of St. Louis. It is about 4 miles west of St. Louis' Lambert Field International Airport, near the intersection of interstate highways I-70 and I-270. Limestone was quarried there from 1939 to 1987. Also on the property is an industrial complex where concrete ingredients are measured and combined, and where asphalt aggregate is prepared. Since 1962, portions of the property have been used as landfills for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. In 1973, soil contaminated with radioactive material was placed in a landfill there.

The radioactive material originated with uranium-ore-processing residues which had been stored at Lambert Airport by the U.S. Atomic Energy Commission (AEC), and which were sold in early 1966 to the Continental Mining and Milling Company, of Chicago, Illinois. The AEC's invitation to bid listed the following residues for purchase: 74,000 tons of Belgian Congo pitchblende raffinate containing about 113 tons of uranium; 32,500 tons of Colorado raffinate containing about 48 tons of uranium; and 8700 tons of leached barium sulfate containing about 7 tons of uranium. The material was moved from the airport during 1966 to nearby 9200 Latty Avenue, Hazelwood, Missouri. In January 1967, the Commercial Discount Corporation of Chicago took possession of the residues to remove moisture and to ship the residues to the Cotter Corporation facilities in Canon City, Colorado. In December 1969, the remaining material was sold to the Cotter Corporation. In the following four years, the residues, with the principal exception of the 8700 tons of leached barium sulfate, were shipped to Canon City.

In April 1974, Region III representatives of NRC's Office of Inspection and Enforcement visited the Cotter Corporation's Latty Avenue site to check on the progress of the decommissioning activities being performed there. This inspection disclosed that in 1973 Cotter Corporation had disposed of approximately 8700 tons of leached barium sulfate residues mixed with 39,000 tons of top soil at a local landfill.¹

By letter dated June 2, 1976, the Missouri Department of Natural Resources (MDNR) forwarded to the NRC's Region III office newspaper articles which alleged that only 9000 tons of waste had been moved from the Latty Avenue site rather than 40,000 tons and that it was moved to the West Lake Landfill rather than to the St. Louis Landfill No. 1. Region III personnel investigated the allegations and found that 43,000 tons of waste and soil had been removed from the Latty Avenue site and had been dumped at the West Lake Landfill in Bridgeton, and that the waste was covered with only about 3 feet of soil.¹

Discussion with the West Lake Landfill operators indicated that all of the material from Latty Avenue had been disposed of in one area; however, an aerial

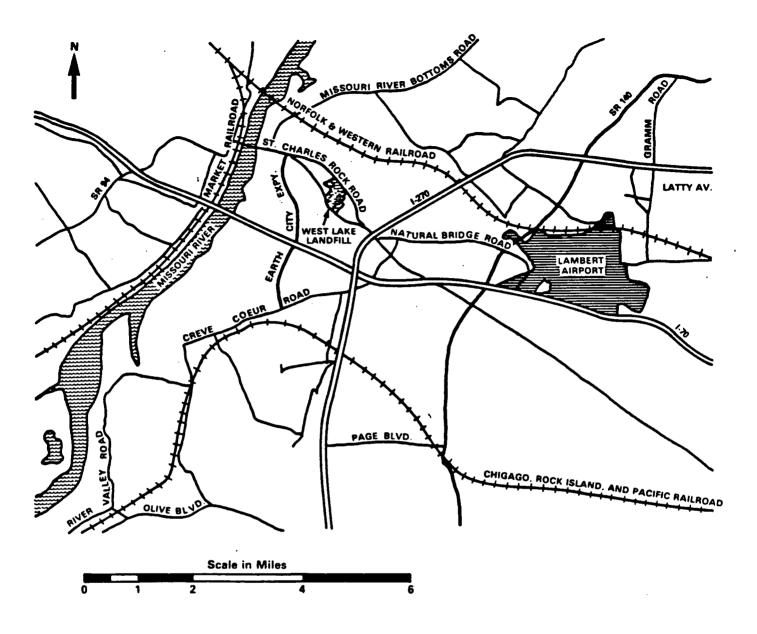


Figure 1 Location of West Lake Landfill

survey of the site identified two areas of contamination. The second contaminated area is identified as Area 1 in Figure 2.2 Subsequently, the NRC sponsored other studies that were directed at determining the radiological status of the landfill. An extensive survey was initiated in November 1980 by the Radiation Management Corporation (RMC) under contract to the NRC. The findings were published in May 1982 in NUREG/CR-2722, "Radiological Survey of the West Lake Landfill, St. Louis County, Missouri." In March 1983, the NRC through Oak Ridge Associated Universities (ORAU) contracted with the University of Missouri-Columbia (UMC), Department of Civil Engineering, to describe the environmental characteristics of the site, conduct an engineering evaluation, and propose possible remedial measures for dealing with the radioactive waste at the West Lake Landfill. In May 1986, ORAU sampled water from wells on and close to the landfill to determine if the radioactive material had migrated into the groundwater. A report is being prepared detailing the results of the investigations conducted by UMC and ORAU.²

Information from all these sources and from NRC site visits forms the basis for this report.

2 DESCRIPTION OF THE SITE

Location

The 200-acre West Lake Landfill site is situated on the southwest side of St. Charles Rock Road in Bridgeton, St. Louis County, Missouri (Figure 1). It is about 16 miles northwest of the downtown area of the city of St. Louis, and about 4 miles west of Lambert Field International Airport (Figure 1). It is approximately 1.2 miles from the Missouri River.

<u>History</u>

The West Lake Landfill has been used since 1962 for the disposal of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. Between 1939 and the spring of 1987, limestone was quarried there. Landfill operations filled in some of the excavated pits from the quarry operations. Also on the property is an active industrial complex in which concrete ingredients are measured and combined before mixing ("batching"), and asphalt aggregate is prepared.

The unregulated landfill, in which the radioactive material was placed in 1973, was closed in 1974 by the Missouri Department of Natural Resources (MDNR). Also in 1974, under an MDNR permit, a newer sanitary landfill was opened and now operates in an adjacent area on the West Lake Landfill property. The newer landfill is protected from groundwater contact. The bottom of the new landfill is lined with clay, and a leachate collection system has been installed. Leachate is pumped to a treatment system consisting of a lime precipitation unit followed in series by an aerated lagoon and two unaerated lagoons. The final lagoon effluent is discharged into St. Louis Metropolitan Sewer District sewers.²

<u>Ownership</u>

Since 1939, the West Lake Landfill has been owned by West Lake Landfill, Inc., of 13570 St. Charles Rock Road, Bridgeton, Missouri.

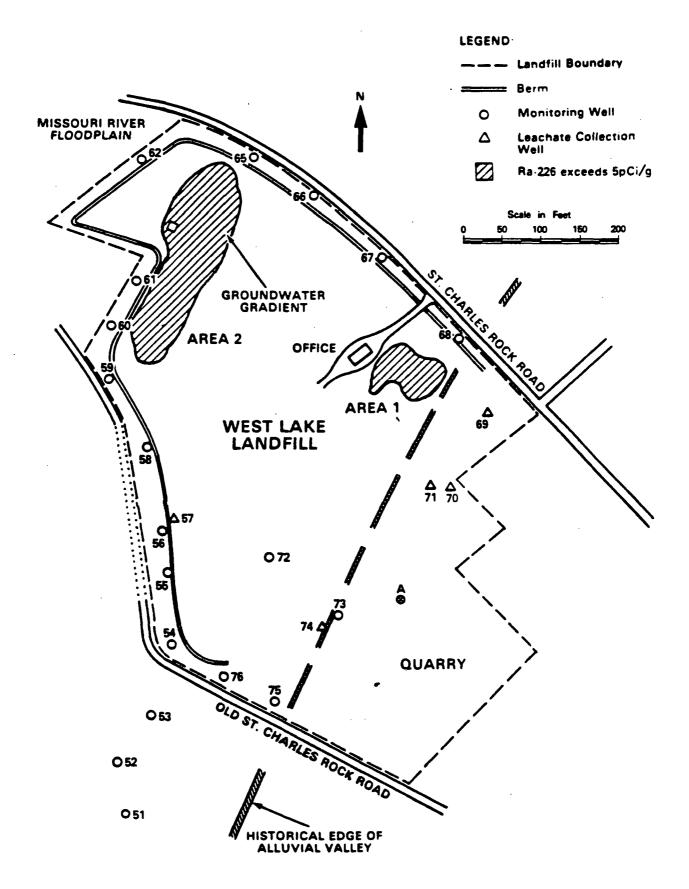


Figure 2 Site Details

Contaminated Areas

Radioactive contamination at the West Lake Landfill has been identified in two separate soil bodies (Figure 2).

The northern area (referred to as Area 2) covers about 13 acres³ and lies above 16 to 20 feet of landfill debris. The contaminated soil forms a more or less continuous layer from 2 to 15 feet in thickness and consists of approximately 130,000 cubic yards of soil. Some of this contaminated soil is near or at the surface, particularly along the face of the northwestern berm. Beneath the landfill debris, the soil profile consists of 3 to 7 feet of floodplain top soil overlying 30 to 50 feet of sand and gravel alluvium.

The southern area of contamination (Area 1) covers about 3 acres³ and contains roughly 20,000 cubic yards of contaminated soil. This body of soil is located east of the landfill's main office at a depth of about 3 to 5 feet and is located over a former quarry pit which was filled in with debris. The depth of debris beneath the contaminated soil is unknown but is estimated to be 50 to 65 feet. Limestone bedrock underlies the landfill debris.²

Topography

About 75 percent of the landfill site is located on the floodplain of the Missouri River (Figure 2) at about 440 feet above mean sea level (msl). The site topography is subject to change because of the types of activities (e.g., landfilling and quarrying) performed there. However, the areas containing the radioactive waste have their surface at about 470 feet (msl). The surface runoff in the area around the landfill follows several surface drains and ditches that run in a northwest direction and drain into the Missouri River.²

Geology

Bedrock beneath the West Lake Landfill consists of limestone that extends downward to an elevation of 190 feet msl. The limestone is dense, bedded, and except for intermittent layers that consist of abundant chert nodules, fairly pure. The Warsaw Formation, which lies directly beneath the limestone, is made up of approximately 40 feet of slightly calcareous, dense shale; this grades into shaley limestone toward the middle of the formation. Bedrock beneath the site dips at an angle of 0.5° to the northeast. Five miles east of the site, the attitude of the bedrock is reversed by the Florissant Dome.²

Since groundwater moving through carbonate rocks often creates channels for rapid water flow, the possibility of this occurring in the West Lake Landfill area was considered. Brief observation of the quarry walls at the landfill suggests that some of the limestone has dissolved. In a letter to West Lake Landfill, Inc., the Missouri Department of Natural Resources stated that the fact that grouting was necessary in the quarry area to block water inflow suggests that the limestone is at least somewhat solution weathered. However, in the draft UMC report, the opinion is expressed that the solution activity has apparently been limited to minor widening of joints and bedding planes near the bedrock surface, and that, at depth and when undisturbed, the limestone is fairly impervious. It is not clear whether the views represented by these statements are in conflict.

Soil material in the area may be divided into two categories: Missouri River alluvium and upland loessal soil. This demarcation is shown as the historical edge of the alluvial valley in Figure 2. The division is made on the basis of soil composition, depositional history, and physical properties. The West Lake Landfill lies over this transition zone.²

Hydrology

Groundwater flows in the area surrounding the West Lake site through two aquifers: the Missouri River alluvium and the shallow limestone bedrock. Although the limestone is fairly impervious and groundwater flows in most areas from the bedrock into the alluvium, contamination of water in the bedrock aquifer is possible. The base of the limestone aquifer is formed by the relatively impermeable Warsaw shale at an elevation of about 190 feet (msl). This shale layer has been reached, but not disturbed, by quarrying operations. Therefore, the Warsaw shale acts as an aquiclude, making contamination of the deeper limestone unlikely.

The deep Missouri River alluvium, which is under about 10 feet of more-recent alluvium, acts as a single aquifer of very high permeability. This aquifer is relatively homogeneous in a downstream direction and decreases in permeability near the valley walls.

The water table of the Missouri River floodplain is generally within 10 feet of the ground surface, but at many points it is even shallower. At any one time, the water levels and flow directions are influenced by both the river stage and the amount of water entering the floodplain from adjacent upland areas.

Water levels recorded between November 1983 and March 1984 in monitoring wells at the landfill, indicate a groundwater gradient of 0.005 flowing in a N 30°W direction beneath the northern portion of the landfill. This represents the likely direction of leachate migration from the landfill.

Since no other recharge sources exist above the level of the floodplain, the only water available to leach the landfill debris is that resulting from rainfall infiltrating the landfill surface. Because the underlying alluvial aquifer is highly permeable, there will be little "mounding" of water beneath the landfill. Also, the northern portion of the landfill has a level surface, and thus it is likely that at least half of the rainfall infiltrates the surface. The remaining rainfall is lost to evapotranspiration and (to a lesser degree) surface runoff.²

No public water supplies are drawn from the alluvial aquifer near the West Lake Landfill. It is believed that only one private well in the vicinity of the landfill is used as a drinking-water supply. This well is 1.4 miles N 35°W of the Butler-type building on the West Lake Landfill.

Because of the extremely low slope of the Missouri River floodplain surface, rain falling on the plain itself generally infiltrates the soil rather than running off the surface. The only streams present on the floodplain are those that originate in upland areas. Drainage patterns on the plain have been radically altered by flood control measures taken to protect Earth City and by drainage of swamps and marshes. Because of the relationship that exists

between river level and groundwater level in portions of the floodplain near the river, streams may either lose flow (at low stage) or gain flow (at high stage).

The present channel of the Missouri River lies just under 2 miles west and northwest of the landfill. The Missouri River stage at St. Charles (mile 28) is zero for a water level of 413.7 feet (msl). Average discharge of the Missouri River is 77,338 cubic feet per second.

Water supplies are drawn from the Missouri River at mile 29 for the city of St. Charles, and the intake is located on the north bank of the river. Another intake at mile 20.5 is for the St. Louis Water Company's North County plant. The city of St. Louis takes water from the Mississippi River, which is joined by the Missouri River downstream from the landfill. The intake structures for St. Louis are on the east bank of the river, so that the water drawn is derived from the upper Mississippi.²

Demography

Two small residential communities are present near the West Lake Landfill: Spanish Lake Village consists of about 90 homes and is located 0.9 mile south of the landfill, and a small trailer court lies across St. Charles Rock Road, 0.9 mile southeast of the site. Subdivisions are presently being developed 1 to 2 miles east and southeast of the landfill in the hills above the floodplain. Ten or more houses lie east of the landfill, scattered along Taussig Road. The city of St. Charles is located north of the Missouri River, more than 2 miles from the landfill.²

Population density on the floodplain is generally less than 26 persons per square mile, but the daytime population (including factory workers) is much greater than the number of full-time residents. Earth City Industrial Park is located on the floodplain 0.9 to 1.2 miles northwest of the landfill. The Ralston-Purina facilities are located 0.2 mile northeast of the Butler-type building at the landfill. Considering that land in this area is relatively inexpensive and that much of it is zoned for manufacturing, industrial development on the floodplain will likely increase.²

3 RADIOLOGICAL SURVEYS

From August 1980 through the summer of 1981, the Radiation Management Corporation (RMC), under contract to the NRC, performed an onsite evaluation of the West Lake Landfill³ to define the radiological conditions at the landfill. The results were utilized in performing this determination regarding whether or not remedial actions should be taken.

The area to be surveyed was divided into 33-foot grid blocks and included the following measurements:

- (1) external gamma exposure rates 3.3 feet above the ground surface and beta-gamma count rates 0.4 inch above the surface;
- (2) radionuclide concentrations in surface soils;
- (3) radionuclide concentrations in subsurface deposits;

- (4) total ("gross") activity and radionuclide concentrations in surface and subsurface water samples;
- (5) radon flux emanating from surfaces;
- (6) airborne radioactivity; and
- (7) total activity in vegetation.

External Gamma

The two areas of elevated external (gamma) radiation levels, as they existed in November 1980 at the time of the preliminary RMC site survey, both contained places where levels exceeded 100 μ R per hour at 3.3 feet. In Area 2, gamma levels as high as 3000 to 4000 μ R per hour were detected. The total areas exceeding 20 μ R per hour were about 2 acres in Area 1 and 9 acres in Area 2.3 (The criterion of 20 μ R per hour is derived from the NRC's Branch Technical Position, 46 FR 52061, October 23, 1981, which aims at exposure rates less than 10 μ R per hour above background levels; background radiation was taken to be 10 μ R per hour also.)

External gamma levels were measured in May and July of 1981. These levels were significantly smaller than the November 1980 values, especially in Area 1, because approximately 4 feet of sanitary fill had been added to the entire area, and an equal amount of construction fill was added to most of Area 2. As a result, only a few thousand square feet in Area 1 exceed 20 μR per hour. In Area 2, the total area exceeding 20 μR per hour decreased by about 10 percent, and the highest levels were about 1600 μR per hour near the Butler-type building. 3

Surface Soil Analysis

A total of 61 surface soil samples were gathered and analyzed on site for gamma activity. Concentrations of U-238, Ra-226, Ra-223, Pb-211, and Pb-212 were determined for each sample. In all soil samples, only uranium and/or thorium decay chain nuclides and K-40 were detected. Offsite background samples were on the order of 2 pCi per gram for Ra-226. Onsite samples ranged from about 1 to 21,000 pCi Ra-226 per gram and from less than 10 to 2100 pCi U-238 per gram. In samples in which elevated levels of Ra-226 were detected, the concentrations of U-238 were generally one-half to one-tenth of those of Ra-226. In cases of elevated sample activity, daughter products of both U-238 and U-235 were found. 3

In general, surface activity was limited to Area 2, as indicated by the surface beta-gamma measurements. Only two small regions in Area 1 showed surface contamination; both were near the access road across from the site offices.

In addition to onsite gamma analyses, 12 samples were submitted to RMC's radio-chemical laboratories for thorium and uranium radiochemical determinations. The results of these measurements (Table 4 of NUREG/CR-2722) show that all samples contained high levels of Th-230. The ratio of Th-230 to Ra-226 (inferred from Bi-214) generally ranges from 4:1 to 40:1.

Subsurface Soil Analysis

Subsurface contamination was assessed by extensive "logging" of holes drilled through the landfill. Several holes were drilled in areas known to contain contamination, then additional holes were drilled at intervals in all directions until no further contamination was detected. A total of 43 holes were drilled (11 in Area 1 and 32 in Area 2), including 2 offsite wells for monitoring water. All holes were drilled with a 6-inch auger and were lined with 4-inch PVC (polyvinyl chloride) casing.³

Each hole was scanned with a 2-inch NaI(T1) detector and rate meter system for an initial indication of the location of subsurface contamination. On the basis of the initial scans, 19 holes were selected for detailed gamma logging using the intrinsic germanium (IG) detector and multiple channel analyzer. Concentrations of Ra-226, as determined by the IG system, ranged from less than 1 pCi per gram to 22,000 pCi per gram.³

It was determined that the subsurface deposits extended beyond areas in which surface radiation measurements exceeded the reference level of 20 μ R per hour. The lateral extent of material exceeding 5 pCi Ra-226 per gram, including both surface and buried materials, is shown on Figure 2. The total difference in areas is about 5 acres.

The surface elevations vary by about 20 feet, and the highest elevations occur at locations of more recent fill. Contaminated soil (>5 pCi Ra-226 per gram) is found from the surface to depths as great as 20 feet below the surface. In general, the contamination appears to be a continuous single layer ranging from 2 to 15 feet thick and covering 16 acres.³

Nonradiological Analysis

Six composite samples were submitted to RMC's Environmental Chemistry Laboratory for priority pollutant analysis. Five samples were taken from auger holes (one from Area 1 and four from Area 2) and the sixth was taken from sludge from the West Lake Landfill leachate treatment plant. The analysis shows organic solvents present in the Area 2 samples. Positive results were reported for 25 listed organic compounds. Chromium, copper, lead, nickel, and zinc were the predominant elemental priority pollutants detected. The analysis of the sample from the leachate treatment sludge showed that it had smaller pollutant concentrations than the samples from the auger holes.³

Chemical analyses of material from the radioactive layer from both areas were also performed by RMC's laboratory. In most cases, elevated levels of barium and lead were found.

Background Radioactivity Measurement

Several offsite locations (within a few miles of the West Lake Landfill) were selected for reference background measurements. Background values were all within the normal range. The gamma exposure rates were 8 and 10.6 μ R per hour. Radium-226 concentrations in soil were 2.5 and 2.6 pCi per gram. Radon flux from the ground surface was 0.50 and 0.58 pCi per square meter-second; working level values were 0.0011, 0.0017, and 0.005 WL.³

Airborne Radioactivity Analysis

Both gaseous and particulate airborne radioactivity were sampled and analyzed during this study. Since it was known that the buried material consisted partially or totally of uranium ore residues, the sampling program concentrated on measuring radon and its daughters in the air. Two methods were used: the first was a scintillation flask (accumulator) method for radon gas, and the second was analysis of filter paper activity for particulate daughters. A series of grab samples using the accumulator method were taken between May and August of 1981. A total of 111 samples from 32 locations were collected. Measurable radon flux levels ranged from 0.2 pCi per square meter-second in low background areas to 865 pCi per square meter-second in areas of surface contamination.³

At three locations, measurements were repeated over a period of 2 months. Significant fluctuations were observed at two locations. The fact that these fluctuations were real and not measurement artifacts was later confirmed by duplicate charcoal canister samples.

A set of 10-minute, high-volume, particulate, air samples was taken to determine both short-lived radon daughter concentrations and long-lived gross alpha activity. The highest levels (0.031 WL) were detected in November 1980, near and inside the Butler-type building. These two samples approximately equal NRC's 10 CFR Part 20, Appendix B, alternate concentration limit of one-thirtieth WL for unrestricted areas. In addition to the routine 10-minute samples, five 20-minute, high-volume, air samples were taken and counted immediately on the IG gamma spectroscopy system to detect the presence of Rn-219 daughters. All samples were taken near surface contamination. Concentrations of Rn-219 daughters ranged from 6 x 10^{-11} to 9 x 10^{-10} μ Ci per cubic centimeter.³

Vegetation Analysis

Vegetation samples collected by RMC included weed samples from onsite locations and farm crop samples (winter wheat) near the northwest boundary of the landfill. This location was chosen because water could run off from the fill onto the farm field. No elevated activities were found in these samples.³

Water Analysis

A total of 37 water samples were taken by RMC and analyzed for gross alpha and beta activity. Four samples were taken in the fall of 1980 and the remainder in the spring and summer of 1981. One sample was equal to the U.S. Environmental Protection Agency (EPA) gross-alpha-activity standard for drinking water of 15 pCi per liter and that was a sample of standing water near the Butler-type building. Several samples, including all the leachate treatment plant samples, exceeded the EPA drinking water action level for gross beta activity. Subsequent isotopic analyses indicated that the beta activity could be attributed to K-40. None of the offsite samples exceeded either EPA standard.³

In 1981, the Missouri Department of Natural Resources collected 41 water samples that RMC analyzed for radioactivity. Of these samples, 5 were background, 10 were onsite surface water, 10 were shallow groundwater standing in boreholes, and 16 were landfill leachate. From these data, background activity is estimated as 1.5 pCi gross alpha activity per liter and 30 pCi gross beta activity per liter. One groundwater sample was at 15 pCi gross alpha per liter, and one

surface water sample was 45 pCi per liter. Most of the leachate samples were above 50 pCi beta per liter.³

In addition, groundwater samples in 11 perimeter monitoring wells at the West Lake Landfill were taken by the Reitz and Jens Engineering firm on November 15, 1983, and by University of Missouri at Columbia (UMC) personnel on March 21, 1984. In both sampling times, one well, but not the same one, exceeded the EPA's drinking water standard of 15 pCi per liter (18.2 pCi per liter in 1983 and 20.5 pCi per liter in 1984). On May 7 and 8, 1986, Oak Ridge Associated Universities (ORAU) personnel took water samples from 44 perimeter wells; only one (by Old St. Charles Rock Road) with 17 pCi alpha activity per liter exceeded the drinking water standard.²

The operators of the landfill, West Lake Landfill, Inc., have an ongoing hydrogeologic investigation of the site, which also involves analyses of monitoring well samples for radioactivity and for priority pollutants.

4 ESTIMATION OF RADIOACTIVITY INVENTORY

Soil sample analyses have shown that the radioactive material in Areas 1 and 2 of the landfill consists almost entirely of natural uranium and its radioactive decay products.

The analyses of soil samples indicate that the naturally occurring U-238 to Th-230 to Ra-226 equilibrium has been altered and that the ratio of Ra-226 to U-238 is on the order of 2:1 to 10:1; the ratio of Th-230 to Ra-226 generally ranges from 4:1 to about 40:1. These ratios are in accord with the history of the radionuclide deposits in the West Lake Landfill, i.e., that they came from the processing of uranium ores. The indicator radionuclides for assessment of the radiological impacts of the material are therefore U-238, Th-230, and Ra-226.

Using the RMC data and averaging the auger hole measurements over the volumes of radioactive material found in Areas 1 and 2, a mean concentration of 90 pCi per gram was calculated for Ra-226.² For the ratio of Th-230 to Ra-226, the RMC data³ range from 4:1 to 40:1; data from samples taken in 1984 along the berm range up to almost 70:1.⁵ A further consideration is that the material came from Cotter Corporation's Latty Avenue site (later sold to Futura Coatings, Inc.). Measurements at the Latty Avenue site are variously reported as up to 180:1⁶ and about 300:1.⁷ Some material of that nature might have been transferred along with the barium sulfate residues. To ensure conservatism in estimating the long-term in-growth of Ra-226, the NRC staff used a ratio of 100:1 to estimate the Th-230 activity. Similarly, the Ra-226:U-238 ratio ranges from 2:1 to 10:1. This ratio is less critical to the radiological aspect of the site and has been estimated to be 5:1 for purposes of calculation.

Using the Th-230:Ra-226 ratio of 100:1, the Th-230 activity is 9000 pCi per gram. If the U-238 concentration (as well as U-234 which would be similarly separated from the ore) is a factor of 5 less than Ra-226, this implies about 18 pCi U-238 per gram. The total mass of radioactive material in the landfill was estimated by visually integrating the volume of radioactive material from graphs and multiplying by an average soil density, resulting in 1.5×10^{11} grams (150,000 metric tons) of contaminated soil.

These numbers indicate that there are about 14 Ci of Ra-226 contained with its decay products in the radioactive material in the landfill. The material also contains about 3 Ci each of U-238 and U-234, and about 1400 Ci of Th-230. These estimates indicate the order of magnitude of the quantities to be dealt with, although the estimate for Th-230 is regarded as conservatively large.

5 APPLICABILITY OF THE BRANCH TECHNICAL POSITION

The NRC has established a Branch Technical Position (BTP) which identifies five acceptable options for disposal or onsite storage of wastes containing low levels of uranium and thorium (46 \overline{FR} 52061, October 23, 1981).

The concentrations permitted under each disposal option are shown in Table 1.

Table 1 Summary of maximum soil concentrations permitted under disposal options

Source: 46 Federal Register 52061

	Disposal options			
Kind of material	1ª	2 ^b	3 ^C	4 ^d
Natural thorium (Th-232 + Th-228) with daughters present and in equilibrium. (pCi/g)	10	50	-	500
Natural uranium (U-238 + U-234) with daughters present and in equilibrium. (pCi/g)	10	-	40	200

^aBased on EPA uranium mill tailings cleanup standards.

Options 1-4 provide methods under 10 CFR 20.302, for onsite disposal of slightly contaminated materials, e.g., soil, if the concentrations of radio-activity are small enough and other circumstances are satisfactory. The fifth option consists of onsite storage pending availability of an appropriate disposal method.

The material present in the West Lake Landfill is a form of natural uranium with daughters, although the daughters are not now in equilibrium. As mentioned in

^bConcentrations based on limiting individual doses to 170 mrem per year.

Concentration based on limiting equivalent exposure to 0.02 WL or less.

dConcentrations based on limiting individual intruder doses to 500 mrem per year and, in cases of natural uranium, limiting exposure to Rn-222 and other airborne alpha emitters to 0.02 WL or less.

Section 4, the average concentration of Ra-226 in the West Lake Landfill wastes is about 90 pCi per gram, which (considered by itself) falls into Option 4 of the BTP since Option 4 criteria are controlled by the Ra-226 content in the wastes (i.e., 200 pCi of U-238 plus U-234 per gram would be accompanied by 100 pCi of Ra-226 per gram). However, because of the large ratio of Th-230 radioactivity to that of Ra-226, the radioactive decay of the Th-230 will increase the concentration of its decay product Ra-226 until these two radionuclides are again in equilibrium. Assuming the ratio of activities of 100:1 used above, the Ra-226 activity will increase by a factor of five over the next 100 years, by a factor of nine 200 years from now, and by a factor of thirty-five 1000 years from now. All radionuclides in the decay chain after Ra-226 (and thus the Rn-222 gas flux) will also be increased by similar multiples. Therefore, the long-term Ra-226 concentration will exceed the Option 4 criteria. Under these conditions, onsite disposal, if possible, will likely require moving the material to a carefully designed and constructed "disposal cell."

6 REMEDIAL ACTION ALTERNATIVES EXAMINED

The evaluation performed by staff of the University of Missouri at Columbia addresses six potential remedial action alternatives, including that of leaving the radioactive material as it is, designated Option A. 2 Option D is the option of excavating the material and shipping it to another site for disposal. Options B. C. E. and F address different approaches to stabilizing the material on the West Lake Landfill site, primarily as temporary remedial actions. Options B, C, and F leave most of the radioactive material where it is but include a variety of measures to contain it and its radon releases and gamma emissions. Option E addresses the approach of constructing an onsite earthen cell, similar to a disposal cell, and moving the radioactive material into it. Under Option F, the radioactive material would be left in place and separate slurry walls would be built downgradient of Areas 1 and 2 to constrain groundwater motion. The estimated costs of Options B through F range from about \$370,000 (Option B) to about \$5,500,000 (Option F) in 1984 dollars. The estimate for Option D is about \$2,500,000, but this does not include the cost of transporting the material to another site and disposing of it there; in the staff's judgment, this could increase the cost by as much as a factor of ten.

Further studies are necessary to determine the most practical approach to disposal of this material.

7 FACTORS CONTRIBUTING UNCERTAINTY

The presence in the landfill of other substances listed as hazardous by the U.S. Environmental Protection Agency raises issues of whether the waste is mixed waste (i.e., both radioactive and chemically hazardous), and whether the landfill must also be disturbed to provide for proper containment of the chemical wastes.

The manner of placing the 43,000 tons of contaminated soil in the landfill caused it to be mixed with additional soil and other material, so that now an appreciably larger amount is involved. If it must be moved, it is not certain whether the amount requiring disposal elsewhere is as little as 60,000 tons or even more than 150,000 tons.

Because the controlling radionuclide (Th-230) has no characteristics that make it easy to measure quantitatively in place, as can be done for the Ra-226 with its decay products, the large but variable ratio of Th-230 to Ra-226 and its decay products makes the delineation of cleanup more difficult. When the ratio is so large (20:1 or more), even a small concentration of Ra-226 in 1988 implies such a large concentration later that it will be necessary to employ more difficult measurement techniques to confirm that the cleanup has been satisfactory.

Any possibility of disposal on site will depend on adequate isolation of the waste from the environment, especially for protection of the groundwater. It is unclear whether the area's groundwater can be protected from onsite disposal at a reasonable cost. This matter will require additional investigation.

8 SUMMARY

In 1973, radioactively contaminated soil amounting to approximately 43,000 tons was deposited in the West Lake Landfill near St. Louis, Missouri. The material originated with decontamination efforts at the Cotter Corporation's Latty Avenue plant. Disposal in the West Lake Landfill was not authorized by the NRC. State officials were not notified of this disposal in 1973 because the landfill was not regulated by the State at the time.

In the period 1980-1981, Radiation Management Corporation (RMC) of Chicago, Illinois, under contract to the NRC, performed a detailed radiological survey of the West Lake Landfill. This survey showed that the radioactive contaminants are in two areas. The northern area (Area 2) covers about 13 acres. The radioactive debris forms a layer 2 to 15 feet thick, exposed in only a small area on the landfill surface and along the berm on the northwest face of the landfill. The southern area (Area 1) contains a relatively minor fraction of the debris covering approximately 3 acres with most of the contaminated soil buried with about 3 feet of clean soil and sanitary fill.

The RMC survey showed that the radioactivity is from the naturally occurring U-238 and U-235 series with Th-230 and Ra-226 as the radionuclides that dominate radiological impact. The survey data indicate that the average Ra-226 concentration in the radioactive wastes is about 90 pCi per gram; the staff estimates the average Th-230 concentration to be about 9000 pCi per gram. Since Ra-226 has been depleted with respect to its parent Th-230, Ra-226 activity will increase in time (for example, over the next 200 years, Ra-226 activity will increase ninefold over the present level). This increase in Ra-226 must be considered in evaluating the long-term hazard posed by this radioactive material.

In addition to RMC's radiological survey, soil and water samples were collected and analyzed by others, including ORAU, UMC, and MDNR. Occasionally a sample of water from a monitoring well exceeds slightly the EPA drinking water standard of 15 pCi gross alpha per liter. Sample analyses for priority pollutants (non-radioactive hazardous substances) show a number of listed pollutants are present. The landfill operators are also conducting a hydrogeological investigation.

From the RMC, UMC, and ORAU surveys conducted at the West Lake Landfill site the staff has made the following findings:

- (1) There is a large quantity (on the order of 150,000 tons) of soil contaminated with long-lived radioactive material in the West Lake Landfill. Almost all the radioactivity consists of natural uranium and its radioactive decay products.³
- (2) Based on the radiological surveys, the radioactive wastes as presently stored at the West Lake Landfill do not satisfy the conditions for Options 1-4 of the NRC's Branch Technical Position (BTP) regarding the disposal of radioactive wastes containing uranium or thorium residues.⁸
- (3) A dominant factor for the future is that the average activity concentration of Th-230 is much larger than that of its decay product Ra-226, indicating a significant increase in the radiological hazards in the years and centuries to come.
- (4) Some of the radioactive material on the northwestern face of the berm has no protective cover of soil to prevent the spread of contamination and attenuate radiation.
- (5) Slightly more than 8 acres of the site exceed 20 μ R per hour; the highest reading of 1600 μ R per hour occurs near the Butler-type building.
- (6) Radon and daughters were measured at 0.031 WL in and around the Butler-type building. This exceeds the BTP value of 0.02 WL.
- (7) Based on monitoring-well sample analyses, some low-level contamination of the groundwater is occurring, indicating that the groundwater in the vicinity is not adequately protected by the present disposition of the wastes.
- (8) Although these radiological conditions indicate that remedial action is needed, it is unlikely that anyone has received significant radiation exposures from the existing situation.
- (9) Sampling results show that chemically hazardous materials have been disposed of adjacent to or possibly mixed with the radioactive material.³
 It is possible that part of the radioactive material has become "mixed" waste.

From these findings and the information developed to date, the NRC staff concludes: (1) measures must be taken to establish adequate permanent control of the radioactive waste and to mitigate the potential long-term adverse impacts from its existing temporary storage conditions and (2) the information developed to date is inadequate for a technological determination of several important issues, i.e., whether mixed wastes are involved, and whether onsite disposal is practical technologically, and, if so, under what alternative methods.

As indicated by the estimates developed by UMC, remedial action will be costly. Further, the investigations to develop the necessary information to resolve major questions and to provide a sound basis for evaluation of the feasibility of disposal alternatives may also be costly. Therefore, it is necessary to determine the way to accomplish the further studies and remedial actions that are needed.

9 REFERENCES

- ¹U.S. Nuclear Regulatory Commission, Office of Inspection and Enforcement, Region III, "IE Investigation Report No. 76-01," January 4, 1977.
- ²S.K. Banerji, W.H. Miller, J.T. O'Connor, L.S. Uhazy, "Site Characterization and Remedial Action Concepts for the West Lake Landfill," University of Missouri-Columbia, Columbia, Missouri 65211 (in preparation).
- ³Radiation Management Corporation, "Radiological Survey of the West Lake Landfill, St. Louis County, Missouri," NUREG/CR-2722, U.S. Nuclear Regulatory Commission, May 1982.
- 4N.A. DiPasquale, Missouri Department of Natural Resources, letter dated October 9, 1987, to W. E. Whitaker, President, West Lake Landfill, Inc., re: Hydrogeologic Investigation, West Lake Landfill, Primary Phase Report, Received November 4, 1986.
- ⁵A.J. Boerner, "Survey for Berm Erosion, West Lake Landfill, St. Louis County, Missouri," Oak Ridge Associated Universities, April 6, 1984.
- ⁶L.W. Cole, "Radiological Evaluation of Decontamination Debris Located at the Futura Coatings Company Facility," Oak Ridge Associated Universities, September 1981.
- ⁷L.W. Cole, "Preliminary Radiological Survey of Proposed Street Right-of-Way at Futura Coatings, Inc., 9200 Latty Avenue, Hazelwood, Missouri," Oak Ridge Associated Universities, December 1981.
- ⁸U.S. Nuclear Regulatory Commission, Uranium Fuel Licensing Branch, Branch Technical Position, "Disposal or Onsite Storage of Thorium or Uranium Waste From Past Operations," <u>Federal Register</u>, Vol. 46, pages 52061-52063, October 23, 1981.

NRC PORM 336 (8-87) NRCM 1102, 3201, 3202 BIBLIOGE	U.S. NUCLEAR REGULATORY COMMIS	NUREG-1308, RE	PPMB: DPS, add Vol. No., if em. EV . 1	
SEE INSTRUCTIONS ON THE REVERSE				
2. TITLE AND SUBTITLE		3. LEAVE BLANK		
Radioactive Material i	n the West Lake Landfill			
Summary Report		4 DATE REPOR		
5 AUTHORISI		MONTH E o brushy	YEAR 1000	
3 AUI NUMIEI	·	February 6. DATE REP	1988	
		MONTH	YEAR	
7 PERFORMING ORGANIZATION NAME AND MAIL	INC APPRECE (James To Code)	June 8. PROJECT/TABE/MORK UNIT 8	1988	
.,	and Medical Nuclear Safety	B. FRIMEUT/TRANSPORTE	UMSER	
	erial Safety and Safeguards	9. FIN OR GRANT NUMBER		
10. SPONSORING ORGANIZATION NAME AND MAIL	ING ADDRESS (Include Ze Cade)	11a, TYPE OF REPORT		
Same as 7. above.		Summary Report		
Same as 7. above.		b. PERIOD COVERED (Inclusive		
	•			
12 SUPPLEMENTARY NOTES	40.0001			
Pertains to Docket No.	. 40-8801	·		
13. ABSTRACT (200 words or less)	•			
summarizes the circums The radioactive materi sale by the Atomic Ene on the radiological en	liquid wastes, and construction stances of the radioactive mater ial resulted from the processing ergy Commission of the processing vironmental aspects as they reconcluded that remedial action	rial in the West Lak g of uranium ores an ng residues. Primar late to potential di	e Landfill. d the subsequer y emphasis is	
14 DOCUMENT ANALYSIS - a KEYWORDS/DESCRI	IPTORS		15 AVAILABILITY	
			STATEMENT	
radioactive waste contaminated	environmental radiological		Unlimited	
groundwater	analysis		18 SECURITY CLASSIFICAT	
hydrology b. IDENTIFIERS/OPEN-ENDED TERMS	concentration		Unclassified	
			Unclassifie	
			17. NUMBER OF PAGES	
			18 PRICE	

SITE CHARACTERIZATION AND REMEDIAL ACTION CONCEPTS FOR THE WEST LAKE LANDFILL

Docket No. 40-8801

Manuscript Completed: July 1989 Date Published: July 1989

Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555

PREFACE

This report has as its basis a characterization of the West Lake Landfill site and evaluation of some potential remedial measures performed primarily by S. K. Banerji, W. H. Miller, J. T. O'Connor and L. S. Uhazy of the University of Missouri-Columbia. The Nuclear Regulatory Commission received the first and second drafts, then titled "Engineering Evaluation of Options for Disposition of Radioactively Contaminated Residues Presently in the West Lake Landfill, St. Louis County, Missouri," in 1984; thus most of the information in this report dates from 1983-1984. However, some more recent data, principally water sampling results, have been added. Waste disposal and other industrial activities have continued on the 200 acre site, as have activities in the vicinity, resulting in changes in details of topography, roads, etc. To provide a more complete view of the radioactive material in the landfill, use has been made of figures from the report titled "Radiological Survey of the West Lake Landfill, St. Louis County, Missouri," NUREG/CR-2722, May 1982.

The remedial action concepts in this report are those proposed by the contractor. Judgments expressed in this report about these concepts are in general those of the contractor, and do not necessarily represent the views of the Nuclear Regulatory Commission. For example, the cost estimates for these concepts are based on radium-226 concentrations whereas the long-term issue is dependent upon the thorium-230 concentrations.

Although some of its information has not been updated since 1984, this report is being released so as to make its collected information available to interested parties.

ABSTRACT

The West Lake Landfill is near the city of St. Louis in Bridgeton, St. Louis County, Missouri. In addition to municipal refuse, industrial wastes and demolition debris, about 43,000 tons of soil contaminated with uranium and its radio-active decay products were placed there in 1973. After learning of the radioactive material in the landfill, the U.S. Nuclear Regulatory Commission (NRC) had a survey of the site's radioactivity performed and, in 1983, contracted, through Oak Ridge Associated Universities (ORAU), with the University of Missouri-Columbia (UMC) to characterize the environment of the site, conduct an engineering evaluation, and propose remedial measures. This report presents a description of the results of the UMC work, providing the environmental characteristics of the site, the extent and characteristics of the radioactive material there, some considerations with regard to potential disposal of the material, and some concepts for remedial measures.

CONTENTS

			Page
PREF	ACE	••••••••••••••••	iii
ABST	RACT.	•••••••••••••••••••••••••••••••••••••••	V
SUMM	ARY	•••••••••••••••••	ix
1	INTR	DDUCTION	1-1
2	SITE	DESCRIPTION	2-1
		Location. Zoning. History. Ownership. Contaminated Areas. Topography. Geology. Hydrology. Meteorology. Ecology. Demographics.	2-1 2-1 2-2 2-2 2-2 2-3 2-3 2-6 2-10 2-11 2-14
3 .	RADI	OLOGICAL CHARACTERIZATION OF THE SITE	3-1
	3.1 3.2 3.3	Radiological Surveillance	3-1 3-2 3-7
4	APPL	ICABILITY OF THE BRANCH TECHNICAL POSITION	4-1
5	REME	DIAL ACTION ALTERNATIVE CONSIDERATIONS	5-1
	5.1 5.2	Option A: No Remedial Action	5-1
	5.3 5.4	Deption D: Removing Radioactive Soil and Relocating	5-2 5-4
	5.5	It Option E: Excavation and Temporary Onsite Storage in	5-5
	5.6	a TrenchOption F: Construction of a Slurry Wall to Prevent	5-6
		Offsite Leachate Migration	5-8
6	RFFF	RENCES	6-1

CONTENTS (Continued)

FIGURES

		Page
1.1 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Location of West Lake Landfill	1-2 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24
2.11 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	International Airport. Wind distribution for West Lake area. External gamma radiation levels (November 1980). Location of surface soil samples, Area 1. Location of auger holes, Area 1. Location of auger holes, Area 2. Auger hole elevations and location of contamination within each hole. Cross-section B-B showing subsurface deposits in Area 1. Cross-section E-E showing subsurface deposits in Area 2. Rn-222 flux measurements at three locations in Area 2 (1981).	2-25 2-26 3-9 3-10 3-11 3-12 3-13 ,3-14 3-15 3-16 3-17
	TABLES	
3.1 3.2	RMC radionuclide analyses of water samples from the West Lake site taken by MDNR in 1981	3-18
3.3 3.4	in pCi/l)	3-20 3-21
4.1	Summary of maximum soil concentrations permitted under disposal options	3-26 4-2
5.1 5.2 5.3	Itemized cost of remedial action, Option B	5-10 5-11 5-12

CONTENTS (Continued)

TABLES (Continued)

		Page
5.4	Itemized cost of remedial action, Option E	5-13
5.5	Itemized cost of remedial action, Option F	5-14

SUMMARY

In 1973, approximately 7900 metric tons (mt) (8700 short tons) of radioactively contaminated barium sulfate (BaSO₄) residues were mixed with about 35,000 mt (39,000 t) of soil, and the entire volume was placed in the West Lake Landfill in St. Louis County, Missouri. This material resulted from decontamination efforts at the Cotter Corporation's Latty Avenue plant where the material had been stored. Disposal in the West Lake Landfill was not authorized by the Nuclear Regulatory Commission (NRC) and was contrary to the disposal location indicated in the NRC records. State officials were not notified of this disposal since the landfill was not regulated by the State at the time. Although the contamination does not present an immediate health hazard, authorities have been concerned about whether this material poses a long-term health hazard to workers and residents of the area and what, if any, remedial action is necessary.

In 1980-81, Radiation Management Corporation (RMC) of Chicago, Illinois, performed a detailed radiological survey of the West Lake Landfill under contract to the NRC (NUREG/CR-2722). This survey was performed to determine the extent of radiological contamination. Before this survey, little was known about the location or activity of radionuclide-bearing soils in the landfill.

¥

★ This survey showed that the radioactive contaminants are in two areas. The northern area (Area 2) covers about 13 acres. The radioactive debris forms a layer 2 to 15 feet thick, exposed in only a small area on the landfill surface and along the berm on the northwest face of the landfill. The southern area (Area 1) contains a relatively minor fraction of the debris covering approximately 3 acres with most of the contaminated soil buried with about 3 feet of clean soil and sanitary fill.

The RMC survey showed that the radioactivity is from the naturally occurring U-238 and U-235 series with Th-230 and Ra-226 as the radionuclides that dominate radiological impact. The survey data indicate that the average Ra-226 concentration in the radioactive wastes is about 90 pCi per gram; the average Th-230

concentration is estimated to be about 9000 pCi per gram. Since Ra-226 has been depleted with respect to its parent Th-230, Ra-226 activity will increase in time (for example, over the next 200 years, Ra-226 activity will increase ninefold over the present level). This increase in Ra-226 must be considered in evaluating the long-term hazard posed by this radioactive material.

In addition to RMC's radiological survey, soil and water samples were collected and analyzed by others, including Oak Ridge Associated Universities (ORAU), and the University of Missouri-Columbia (UMC). "Occasionally a sample of water from a monitoring well exceeds slightly the EPA drinking water standard of 15 pCi gross alpha per liter. Sample analyses for priority pollutants (non-radioactive hazardous substances) show a number of listed pollutants are present.

On the basis of radiological surveillance conducted by RMC, UMC, and ORAU, the following areas of concern have been identified:

- (1) Radioactive soil is eroding from the northwestern face of the berm, and is being transported off site.
- (2) Radon gas had been observed to accumulate to an unacceptable level in the Butler-type building on site. This building has since been removed.
- (3) Some degree of radiological contamination has been found in the wells that monitor the perimeter.
- (4) Surface exposure rates over much of the contaminated areas are greater than 20 μ R/hr.

In March 1983, the NRC through ORAU, contracted with UMC to conduct an engineering evaluation of the site and propose possible remedial measures for NRC's consideration for dealing with the radioactive waste at the West Lake Landfill. The following six remedial options were proposed and evaluated in this study.

- o Option A No remedial action
- o Option B Stabilization onsite with restricted land use

- o Option C Extending the landfill offsite with restricted land use
- Option D Removal and relocation of the contaminated material to an authorized disposal site
- o Option E Excavation and temporary onsite storage in a trench
- o Option F Construction of a slurry wall to prevent leachate from migrating off site

It is noted that some of the above alternatives for remedial action were initially evaluated with the objective of permanent disposal of the waste at the site.

1 INTRODUCTION

The West Lake Landfill is located in St. Louis County, Missouri, 6 km (3.7 miles) west of Lambert Field International Airport (Figure 1.1) and southwest of St. Charles Rock Road in Bridgeton, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. In addition, the landfill is an active industrial complex on which concrete ingredients are measured and combined before mixing ("batching"), and asphalt aggregate is prepared. Limestone ceased to be quarried in the spring of 1987.

In 1973, 7900 metric tons [(mt) (8700 short tons)] of radioactively contaminated barium sulfate (BaSO₄) residues from uranium and radium processing were mixed with an estimated 35,000 mt (39,000 tons) of soil and deposited in the West Lake Landfill. Previously, this material was located at the Cotter Corporation's Latty Avenue facility in Hazelwood, Missouri, and was removed during decontamination work. It is not known what levels of contamination were already in the soil before the barium sulfate residues were mixed into it. Disposal in the West Lake Landfill was unauthorized and contrary to the disposal location indicated in the U.S. Nuclear Regulatory Commission's (NRC's) records.

Subsequently, the NRC sponsored studies that were directed at determining the radiological status of the landfill. In 1978, an aerial radiological survey revealed two areas within the landfill where the gamma radiation levels indicated radioactive material had been deposited. A more extensive survey was initiated in November 1980 by the Radiation Management Corporation (RMC) under contract to the NRC.

In March 1983, the NRC through Oak Ridge Associated Universities (ORAU) contracted with the University of Missouri-Columbia Department of Civil Engineering to describe the environmental characteristics of the site, conduct an engineering evaluation, and propose possible remedial measures for dealing with the radioactive waste at the West Lake Landfill. In May 1986, ORAU sampled water from

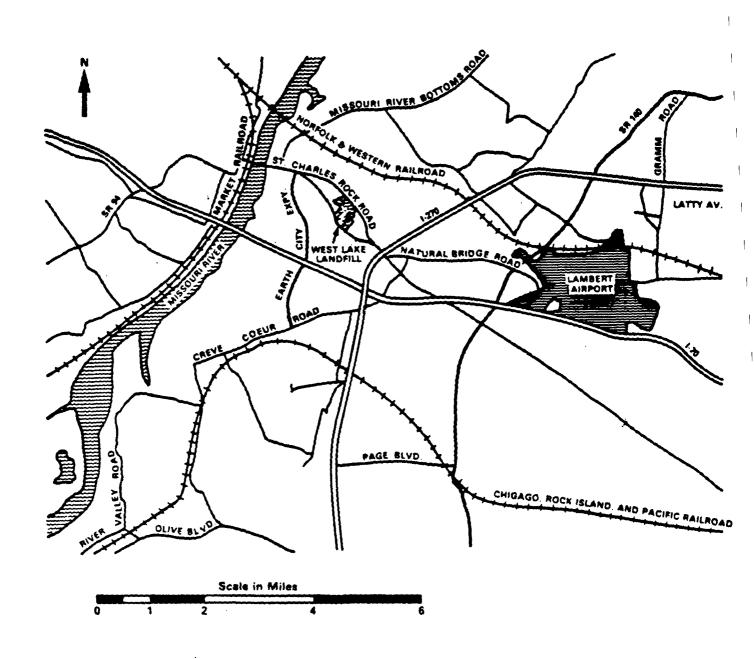


Figure 1:1 Location of West Lake Landfill

wells on and close to the landfill to determine if the radioactive material had migrated into the groundwater.

Information from all these sources forms the basis for this report.

2 SITE DESCRIPTION

This chapter presents a historical and environmental description of the West Lake Landfill site located in St. Louis County, Missouri.

2.1 Location

The 81-hectare (ha) (200-acre) West Lake Landfill property is situated between the St. Charles Rock Road and the Old St. Charles Rock Road in Bridgeton, Missouri. The southeastern and northwestern parts of the landfill abut farmland. Several commercial and industrial facilities are located near the landfill (Figure 2.1). The nearest residential area is a trailer park located approximately 1 km (0.6 mile) to the southeast. A major portion of the landfill (roughly the northern three-fourths of the site) is located on the floodplain, approximately 2 km (1.2 miles) from the Missouri River.

2.2 Zoning

The zoning plan obtained from the Bridgeton Planning and Zoning Department for properties on and adjacent to the landfill is shown in Figure 2.2. A portion of the landfill, including site Area 1, is zoned M-1, which is designated for light manufacturing; the northwest part of the landfill, including Area 2, is zoned as single-family residential (R-1). This R-1 zoning indicates the use to which the land was originally intended. However, the landfill was extended over the land zoned R-1, and the zoning plan was simply not changed to reflect the new usage. Other discrepancies between land use and zoning are found in the nearby Earth City Industrial Park (William Canney, Safety Supervisor of West Lake Landfill, Inc., personal communication, March 1984). The land across St. Charles Rock Road is zoned for light and heavy manufacturing. The remainder of the property surrounding the landfill is zoned residential and business.

2.3 History

The West Lake Landfill was started in 1962 for the disposal of municipal and industrial solid wastes, and to fill in the excavated pits from the quarry operations that had been performed at the site since 1939 (Canney, personal communication, March 1984). In 1974, the landfill was closed by the Missouri Department of Natural Resources (MDNR) (Karch, 1976). A new sanitary landfill, in an area of the West Lake Landfill property which is protected from groundwater contact, now operates under an MDNR permit.

This new part of the landfill was opened in 1974. The bottom is lined with clay and a leachate collection system has been installed. Leachate is pumped to a treatment system consisting of a lime precipitation unit followed in series by an aerated lagoon and two unaerated lagoons. The final lagoon effluent is discharged into St. Louis Metropolitan Sewer District sewers.

The quarrying operation ceased in the spring of 1987 because not enough "good rock" was left at the site.

2.4 Ownership

The West Lake Landfill was owned from 1939 until 1988 by West Lake Landfill, Inc., of 13570 St. Charles Rock Road, Bridgeton, Missouri. Most of the landfill was sold in 1988 to Laidlaw Industries, Inc. The two areas which contain the radioactive material were retained by West Lake Properties as the principal properties of a subsidiary named Rock Road Industries. Inc.

2.5 Contaminated Areas

Radioactive contamination at the West Lake Landfill has been identified in two separate soil bodies (Figure 2.3). Comparisons of radionuclide quantities and of the activity ratios between radionuclides not in secular equilibrium, indicate that the radioactive contamination in the separate soil bodies was derived from the same source, i.e., the Cotter Corporation's former Latty Avenue facility in Hazelwood, Missouri (NRC, NUREG/CR-2722).

The northern area (referred to as Area 2) of contamination shown on Figure 2.3 \star covers an area of 5.2 ha (13 acres) and lies above 5 to 6 m (16-20 ft) of landfill debris. The contaminated soil forms a more or less continuous layer from 1 to 4 m (3 to 13 ft) in thickness, and amounts to approximately 100,000 m³ (130,000 yd³). Some of this contaminated soil is near or at the surface, particularly along the face of the northwestern berm. Beneath the landfill debris, the soil profile consists of 1 to 2 m (3 to 7 ft) of floodplain top soil overlying 10 to 15 m (33 to 50 ft) of sand and gravel alluvium.

The southern area of contamination (referred to as Area 1) shown on Figure 2.3 covers approximately 1.1 ha (3 acres) and contains roughly 15,000 m³ (20,000 yd³) of contaminated soil. This body of soil is located east of the landfill's main office at a depth of about 1 m (3 to 5 ft), and is located over a former quarry pit, which was filled in with debris. The depth of debris beneath the contaminated soil is unknown, but is estimated to be 15 to 20 m (50 to 65 ft). Limestone bedrock underlies the landfill debris.

2.6 Topography

About 75% of the landfill site is located on the floodplain of the Missouri River. The site topography is subject to change because of the types of activities (e.g., landfilling and quarrying) performed there. Figure 2.3 shows a contour map of the site as of July 1986. The surface runoff follows several surface drains and ditches which run in a northwest direction and drain into the Missouri River.

1

2.7 Geology

2.7.1 Bedrock

Bedrock beneath the West Lake Landfill consists of Mississippian age limestone of the Meramacean Series of the St. Louis and Salem formations, which extends downward to an elevation of 58 m (190 ft) mean sea level (msl) (Figure 2.4).*

^{*}Missouri Department of Natural Resources, Division of Geology and Land Survey, Rolla, Missouri, Well Log Files.

The limestone is dense, bedded, and fairly pure except for intermittent layers which consist of abundant chert nodules. The Warsaw Formation—also of Mississippian age—lies directly beneath the limestone. The Warsaw is made up of approximately 12 m (38 ft) of slightly calcareous, dense shale; this grades into shaley limestone toward the middle of the formation (Figure 2.4) (Spreng, 1961). Bedrock beneath the site dips at an angle of 0.5° to the northeast. Eight kilometers (5 miles) east of the site, the attitude of the bedrock is reversed by the Florissant Dome; the bedrock dips radially outward from the apex of this dome at a low angle (Martin, 1966).

Since karst (solution) activity often occurs in carbonate rocks, the possibility of its occurrence in the West Lake Landfill area was considered. Brief observation of the quarry walls at the landfill suggests that some solution of the limestone has occurred, but this solution activity has apparently been limited (see Section 2.8.1) to minor widening of joints and bedding planes near the bedrock surface. Although karst activity within the limestone is relatively minor, the upper surface of the bedrock is irregular and pitted as a result of solution (Lutzen and Rockaway, 1971). This alteration of the bedrock surface is greatest beneath the Missouri River floodplain.

2.7.2 Soils

Soil material in this area may be divided into two categories: Missouri River alluvium and upland loessal soil. This demarcation is shown as the historical edge of the alluvial valley in Figure 2.5. The division is made on the basis of soil composition, depositional history, and physical properties. Because the West Lake Landfill lies over this transition zone, the surface material at the site varies considerably from southeast to northwest.

The Missouri River alluvium (Figure 2.6) ranges in thickness from 12 m (40 ft) beneath the landfill site to more than 30 m (100 ft) at mid-valley (Figure 2.7). The upper 3 m (10 ft) of the soil profile consists of organic silts and clays, that have been deposited by the Missouri River during floods.* Below this

^{*}Missouri Department of Natural Resources, Division of Geology and Land Survey, Rolla, Missouri, Well Log Files.

surface layer, the soil becomes sandy and grades to gravel at depths greater than 5 to 10 m (16 to 33 ft). Because of the effects of channel scour, which continues to grade the sediment after its initial deposition, the alluvium is fairly homogeneous in a horizontal direction and becomes progressively coarser with depth (Goodfield, 1965). At the edges of the floodplain, the alluvium is not as well graded, and a large amount of fine material is present in the deeper sand and gravel.

The upland loessal soil (Figure 2.8) is generally thinner than the floodplain soil, being usually less than 12 m (39 ft) thick, and was deposited during the age of Pleistocene glaciation. The loess consists of silt-sized particles that were transported by wind and deposited as a blanket over much of Missouri and Illinois. On the hills near the West Lake Landfill, the loess layer may be as much as 24 m (79 ft) thick. It consists of 6 to 9 m (20 to 30 ft) of fairly pure silt (Peoria loess) overlying 6 to 15 m (20 to 49 ft) of clay silt (Roxana loess) (Lutzen and Rockaway, 1971). This loess forms the hills to the southeast of the landfill, but it has long ago been removed from the landfill site and most of the surrounding valleys by erosion. The upper 1 m (3 ft) of the loess has been altered to form a thin soil profile. It should be noted that loess has a vertical permeability which is far greater than its horizontal permeability (Freeze and Cherry, 1979). The total permeability of loess is greatly increased by disturbance. The individual silt grains are generally quite angular, and therefore may not be effectively compacted by the methods commonly used to consolidate clay. The technique most effective in the compaction of loess would employ vibration beneath a surcharge. A relict soil profile from 5 to 10 m (16 to 33 ft) thick lies beneath the loess and directly on top of the bedrock. This soil was formed as a residuum before Pleistocene glaciation and was subsequently covered by the loess blanket. This soil is a highly consolidated clay containing abundant chert fragments (Lutzen and Rockaway, 1971). In addition to the natural geologic properties of the landfill, human disturbance of the soil must also be considered since material within the landfill itself can either limit or facilitate migration of leachate to the Missouri River alluvial aquifer.

In order to prevent downward movement of leachate, it is now a common practice to place a layer of compacted clay beneath sanitary landfills. Newer portions

of the landfill (constructed since 1974) have 2 to 3 m (7 to 10 ft) of clay at the base and around the sides. Waste is covered every day with 15 cm (6 in.) of compacted soil; the cover soil presently used is loess (of soil classifications CL and A4) taken from southeast of the landfill (Reitz and Jens, 1983a). If not properly compacted, this material may have a permeability of 0.0001 cm/sec (0.00004 in./sec) or more. It is not known what procedures for compaction, if any, were used at the landfill before 1974 since the site was unregulated in design as well as in materials which were accepted for disposal. It is believed, however, that there is no liner present beneath the northwestern portion of the landfill, and that sanitary (and, possibly, some hazardous) material was placed directly on the original ground surface. Since waste was periodically covered with soil to minimize rodent and odor problems, the landfill probably consists of discrete layers of waste separated by thin soil layers. Both areas containing radioactive material are in these presumably unlined above-ground portions of the landfill.

2.8 Hydrology

2.8.1 Subsurface Hydrology

Groundwater flow in the area surrounding the West Lake site is through two aquifers: the Missouri River alluvium and the shallow limestone bedrock. The base of the limestone aquifer is formed by the relatively impermeable Warsaw shale at an elevation of about 58 m (190 ft) msl (Figure 2.4). This shale layer has been reached, but not disturbed, by quarrying operations. Therefore, the Warsaw shale acts as an aquiclude, making contamination of the deeper limestone very unlikely. The Mississippian limestone beds have very low intergranular permeability in an undisturbed state (Miller, 1977). However, a strong leachate enters the quarry pit at an elevation of about 67 m (220 ft) msl (pt. A on Figure 2.5). This leachate is migrating vertically through more than 30 m (98 ft) of limestone. Explosive detonations associated with quarrying operations will tend to cause fractures to propagate in the quarry wall. These fractures have probably extended less than 10 m (33 ft) into the rock from the quarry face. Beyond this, the rock probably remains undisturbed. These fractures will tend to increase inflow to the quarry pit and allow leachate to percolate downward through the fractured zone. Thus, leachate inflow to the

quarry pit is not evidence of large-scale contamination of the limestone aquifer. The only other mechanism by which leachate could travel rapidly through the limestone is by transport through solution channels. Landfill consultants and quarry operators maintain that the limestone is fairly intact (Canney, personal communication, September 1983), and superficial observation of the quarry walls seems to support this conclusion. Since the limestone is fairly impervious, and groundwater flows in most areas from the bedrock into the alluvium, contamination of water in the bedrock aquifer does not appear likely.

The water table of the Missouri River floodplain is generally within 3 m (10 ft) of the ground surface, but at many points it is even shallower. At any one time, the water levels and flow directions are influenced by both the river stage and the amount of water entering the floodplain from adjacent upland areas. A high river stage tends to shift the groundwater gradient to the north, in a direction that more closely parallels the Missouri River. Local rainfall will shift the groundwater gradient to the west, toward the river and along the fall of the ground surface. This is inferred from water levels measured in monitoring wells at the West Lake site. The fact that groundwater levels commonly fluctuate more than does the Missouri River level, indicates that upland-derived recharge exerts a great deal of influence over groundwater flow at the West Lake site. This influence decreases toward the river.

The deep Missouri River alluvium acts as a single aquifer of very high permeability. This aquifer is relatively homogeneous in a downstream direction, and decreases in permeability near the valley walls. The deeper alluvium is covered by 2 to 4 m (7 to 13 ft) of organic silts and clays that may locally contain a large fraction of sand-sized particles. Water levels recorded between November 1983 and March 1984 in monitoring wells at West Lake* indicate a groundwater gradient of 0.005 flowing in a N 30°W direction beneath the northern portion of the landfill. This represents the likely direction of any possible leachate migration from the landfill (Figure 2.5).

^{*}Data supplied by Reitz and Jens engineering firm, St. Louis, 1984.

The alluvial aquifer recharges from upland areas from three sources: seepage from loess and bedrock bordering the valley, channel underflow of upland streams entering the valley, and seepage losses from streams as they cross the floodplain. Of these sources, streams and their underflow represent the main source of upland recharge to the alluvial aquifer. Streams entering the floodplain raise the water table in a fan-shaped pattern radiating outward from their point of entrance to the plain. In areas where streams are not present, the water slopes downward from the hills, steeply at first and then gently to the level of the free water surface in the Missouri River channel. The situations described above do not take into account the effect of variations in permeability of the shallow soil layer. Aerial photography of the site indicates that a filled backchannel (oxbow lake) type of soil deposit is present along the southwest boundary of the landfill (USDA, 1953). This deposit is probably composed of fine-grained material to the depth of the former channel (6 to 10 m) (20 to 33 ft). This deposit may tend to hamper communication between shallow groundwater on opposite sides of the deposit.

Since no other recharge sources exist above the level of the floodplain, the only water available to leach the landfill debris is that resulting from rainfall infiltrating the landfill surface. Because the underlying alluvial aquifer is highly permeable, there will be little "mounding" of water beneath the landfill. Because the northern portion of the landfill has a level surface it is likely that at least half of the rainfall infiltrates the surface. The remaining rainfall is lost to evapotranspiration and (to a lesser degree) surface runoff. Due to the height of the berm, temporary impoundment of surface runoff is a common occurrence.

No public water supplies are drawn from the alluvial aquifer near the West Lake Landfill. It is believed that only one private well (Figure 2.9) in the vicinity of the landfill is used as a drinking water supply. This well is 2.2 km (1.4 miles) N 35°W of the former Butler-type Building location on the West Lake Landfill. In 1981, analysis showed water in this well to be fairly hard (natural origins) but otherwise of good quality (Long, 1981).

Water in the Missouri River alluvium is hard and usually contains a high concentration of iron and manganese (Miller, 1977). The amount of dissolved

solids present in the water of the alluvial aquifer varies greatly; purity increases toward mid-valley where groundwater velocity is greatest. A water sample from a well in the alluvium 3 km (1.9 miles) north of the landfill had a total dissolved solids content of 510 mg/liter and total hardness as $CaCO_3$ of 415 mg/liter. Water in the limestone bedrock generally has a hardness greater than 180 mg/liter as $CaCO_3$ equivalent (Emmett and Jeffery, 1968). Total dissolved solids range from 311 to 970 mg/liter. Water in the limestone aquifer may contain a large amount of sulfate of natural origin (Miller, 1977).

2.8.2 Surface Hydrology

Because of the extremely low slope of the Missouri River flood plain surface, precipitation falling on the plain itself generally infiltrates the soil rather than running off the surface. The only streams present on the floodplain are those that originate in upland areas. Drainage patterns on the plain (Figure 2.9) have been radically altered by flood control measures taken to protect Earth City (Figure 2.1) and by drainage of swamps and marshes. Before these alterations, Creve Coeur Creek passed just south of the landfill, and drained a fairly large area. It has since been redirected to discharge into the Missouri River upstream (south) of St. Charles (Figure 2.9). The old channel still carries some water, and empties into the Missouri River 45.2 km (28 miles) upstream from the confluence with the Mississippi River. Near the landfill, this stream is usually dry. As it crosses the flood plain, the creek passes through shallow lakes which provide a more or less continuous flow to the Missouri River throughout the year. A second stream, Cowmire Creek, crosses the floodplain east of the site. This stream flows northward and joins a backwater portion of the Missouri River at kilometer 35.4 (22 miles). Because of the relationship which exists between river level and groundwater level in portions of the floodplain near the river, these streams may either lose flow (at low stage) or gain flow (at high stage).

The present channel of the Missouri River lies about 3 km (2 miles) west and northwest of the landfill. Early land surveys of this area indicate that 200 years ago the channel was located several hundred meters to the east (toward the landfill) of its present course (Reitz and Jens, 1983b). The Missouri River has a surface slope of about 0.00018 (Long, 1981). River stage at St. Charles

[kilometer 45.2 (mile 28)] is zero for a water level of 126.1 m (413.7 ft) ms1 (Reitz and Jens, 1983a). Average discharge of the Missouri River is 2190 m³/s (77,300 ft³/s), with a maximum flow of 2850 m³/s (101,000 ft³/s) for the period of April through July, and a minimum flow of 1140 m³/s (40,300 ft³/s) in January and December (Miller, 1977). Some average properties of Missouri River water for the period 1951-1970 were: alkalinity = 150 mg/liter as $CaCO_3$ equivalent; hardness = 209 mg/liter as $CaCO_3$ equivalent; pH = 8.1; and turbidity = 694 JTU (Jackson turbidity unit).

Water supplies are drawn from the Missouri River at kilometer 46.6 (mile 29) for the city of St. Charles, and the intake is located on the north bank of the river. Another intake at kilometer 33 (mile 20.5) is for the St. Louis Water Company's North County plant (Reitz and Jens, 1983a).

The city of St. Louis takes water from the Mississippi River, which joins the Missouri River downstream from the landfill. In this segment of the river, the two flow-streams have not completely mixed and the water derived from the Missouri River is still flowing as a stream along the west bank of the Mississippi River channel*. The intake structures for St. Louis are on the east bank of the river so that the water drawn is derived from the upper Mississippi.

2.9 Meteorology

The climate of the West Lake area is typical of the midwestern United States, in that there are four distinct seasons. Winters are generally not too severe and summers are hot with high humidity. First frosts usually occur in October; and freezing temperatures generally do not persist past March. Rainfall is greatest in the warmer months, (about one-quarter of the annual precipitation occurs in May and June) (Figure 2.10) (NRC, 1981). In July and August, thunderstorms are common, and are often accompanied by short periods of heavy rainfall. Average annual precipitation is 897 mm (35.3 in.), which includes the average annual snowfall of 437 mm (17.2 inches snow). Average relative humidity is 68%,

^{*}Ned Harvey, hydrologist with the USGS, telephone communication, August 1983.

and humidities over 80% are common during the summer. Wind during the period of December through April is generally from the northwest; winds blow mainly from the south throughout the remainder of the year. A compilation of hourly wind observations shows that although the wind resultant is fairly consistent on a monthly basis, the wind actually shifts a good deal and is very well distributed in all directions (Figure 2.11) (NRC, 1981; U.S. Department of Commerce, 1960).

Meteorological data used is from Lambert Field International Airport which is 6 km (3.7 miles) east of the West Lake site. Temperature and precipitation data are also representative of West Lake. However, because of differences in topography between Lambert Field and the site, the actual wind directions at West Lake may be slightly skewed in a NE-SW direction parallel to the Missouri River valley.

2.10 Ecology

The West Lake Landfill is biologically and ecologically diverse. Rather than a single ecological system (e.g., a prairie), it is a mosaic of small habitats associated with

- (1) moist bottomland and farmland adjacent to the perimeter berm
- (2) poor quality drier soils on the upper exterior and interior slopes of the berm
- (3) an irregular waste ground surface associated with the inactive portion of the landfill
- (4) aquatic ecosystems present in low spots on the waste ground surface

Generally, the natural systems which are present are limited by operations in the active portion of the landfill and form a corridor along the perimeter berm from near well site 75 (Figure 2.5), on the Old St. Charles Rock Road, clockwise to the main entrance to the landfill near well site 68, along St. Charles Rock

Road. The following observation and descriptions demonstrate the biological variety of these sites.

The flora of the perimeter berm extending from the southwest clockwise to the area of the main entrance to the landfill present a series of contrasts. Along the Old St. Charles Rock Road, the bottom and lower slope of the berm is heavily influenced by the nearby mature silver maple (Acer saccharinum), boxelder (Acer negundo), oak (Quercus), sycamore (Platanus), green ash (Fraximus pennsylvanica), and eastern cottonwood (Populus deltoides) trees associated with the old channel of Creve Coeur Creek. At the corner, between wells 59 and 60 (Figure 2.5), large silver maple and boxelder trees form a dense stand in the moist soils at the base of the berm. The density of these trees declines on this slope extending toward the north (well 61) and the Butler-type Building corner. The extension of this slope toward the northwest is dominated by a dense willow-like thicket in which a few eastern cottonwoods and a hawthorn tree have established. From this northwest corner of the landfill to the eastern limit of the trees between the landfill and St. Charles Rock Road (well 65), the exterior slope of the berm is dominated by dense stands of small and large eastern cottonwoods. This latter occurrence reflects the influence of the well-established eastern cottonwoods and sycamores associated with the permanent pond just north of this site (Figure 2.9). The ground cover along these exterior slopes consists of grasses, forbs, plants common to disturbed areas, seedling cottonwoods, and shrubs. A well-manicured grass groundcover continues from the limit of the trees to the area around the main entrance of the landfill and well 68. This vegetation contributes to the partial stabilization of the steep exterior slopes.

The somewhat drier top and the short, interior slope of the berm, colonized by prairie grasses such as bluestem (Andropogon), blends into the irregular surface of the inactive portion of the landfill. Depressions in this surface allow water to collect and tall grasses, foxtail, and plants characteristic of disturbed areas [e.g., ragweed (Ambrosia), mullein (Verbascum), pokeweed (Phytolacca), cinquefoil (Potentilla), sunflower (Helianthus), and plantain (Plantago)] are replaced by characteristic wetland species [e.g., algae (Spirogyra), cattails (Typha), sedges (Carex), and smartweed (Polygonium)]. Young eastern cottonwoods are established at several of these wet sites.

Generally, the surface vegetation of the inactive landfill gives way to barren waste ground around the Butler-type Building location and the barren terrain associated with recent landfill activities.

Animals were observed associated with these habitats. Cottontail rabbits (Sylvilagus) were encountered most frequently and their fecal pellets were observed on the landfill. Density of fecal material was particularly heavy in the thickets on the exterior slopes of the perimeter berm. In this regard, coyote (Canis latrans) feces containing rabbit fur were observed. Small mammals (rodents) were not seen but could certainly be present in these areas. Large ungulates also were not sighted, but tracks and feces of white-tailed deer indicate that they utilize the landfill.

The only birds observed were a crow (Corvus), several robins (Turdus), and white-crowned sparrows (Zonotrichia leucophrys). This certainly does not reflect the extent to which birds utilize these habitats, for observations were made early in the spring. It is readily apparent that returning migratory passerines would utilize the surface vegetation and berm thickets for nesting, cover, and feed later in the season. It is also possible that waterfowl could utilize the permanent ponds on the landfill and adjacent to St. Charles Rock Road. Twelve scaup (Aythya) and mallards (Anas) were observed on the lagoon which serves as part of the landfill waste water treatment facility.

Small puddles contained characteristic aquatic invertebrates and at least two species of amphibians. Casual examination of these shallow waters revealed three genera of snails (Physa, Lymnaea, Helisoma), an isopod (Asnellus), cyclopoid copepods, and cladocerans. Aquatic insect larvae were not observed; however, this does not rule out their presence. The sighting of a bullfrog tadpole (Rana catesbeiana) and audition of spring peepers (Hyla), indicates these ponds are utilized as breeding sites. No fish were observed in these puddles on the landfill surface; however, a dead gizzard shad (Dorsoma cepedianum) was seen in the pond adjacent to St. Charles Rock Road. The only reptiles seen were the water snake (Nerodia) and the garter snake (Thamnophis).

Although the northwest inactive portion of the landfill is posted with "No Trespassing" signs, it was evident that humans do encroach on these habitats.

Fishing tackle was found tangled in power lines and trees, and spent small-gauge shotgun shells were found on the landfill surface and berms.

2.11 Demographics

The West Lake Landfill is located in the northwestern portion of the city of Bridgeton, in St. Louis County, Missouri. Earth City Industrial Park is located on the floodplain 1.5 to 2 km (0.9 to 1.2 miles) northwest of the landfill. Population density on the floodplain is generally less than 10 persons per square kilometer (26 persons per square mile); and the daytime population (including factory workers) is much greater than the number of full-time residents.

Major highways in the area include Interstate 70 (I-70) and Interstate 270 (I-270), which meet south of the landfill at Natural Bridge Junction (Figure 1.1). The Earth City Expressway and St. Charles Rock Road lie, respectively, west and east of the landfill. The Norfolk and Western Railroad passes about 1 km (0.6 mile) from the northern portion of the landfill (Figure 1.1). Lambert Field International Airport is located 6 km (3.7 miles) east of the West Lake Landfill.

In addition to factories at Earth City, plants are operated by Ralston-Purina and Hussman Refrigeration across St. Charles Rock Road. The employees of these two plants probably comprise the largest group of individuals in close proximity to the contaminated areas for significant periods of time. The Ralston-Purina facilities are located 0.4 km (0.2 mile) northeast of the Butler-type Building location at the landfill. Considering that land in this area is relatively inexpensive and that much of it is zoned for manufacturing, industrial development on the floodplain will likely increase in the future.

Two small residential communities are present near the West Lake Landfill. Spanish Lake Village consists of about 90 homes and is located 1.5 km (0.9 mile) south of the landfill, and a small trailer court lies across St. Charles Rock Road, 1.5 km (0.9 mile) southeast of the site (Figure 2.1). Subdivisions are presently being developed 2 to 3 km (1.2 to 1.9 miles) east and southeast of the landfill in the hills above the floodplain. Ten or more houses lie east of the

landfill scattered along Taussig Road. The city of St. Charles is located north of the Missouri River at a distance greater than 3 km (1.9 miles) from the landfill.

Areas south of the West Lake Landfill are zoned residential; areas on the other sides are zoned for manufacturing and business (Figure 2.2). Most of the landfill is zoned for light manufacturing (M-1). However, approximately 0.3 km² (0.12 mi²) of the northern portion of the landfill is zoned for residential use; this includes the contaminated area around the Butler-type Building site. The field northwest of the landfill between Old St. Charles Rock Road and St. Charles Rock Road is under cultivation. Trends indicate that the population of this area will increase, but the land will probably be used primarily for industrial facilities.

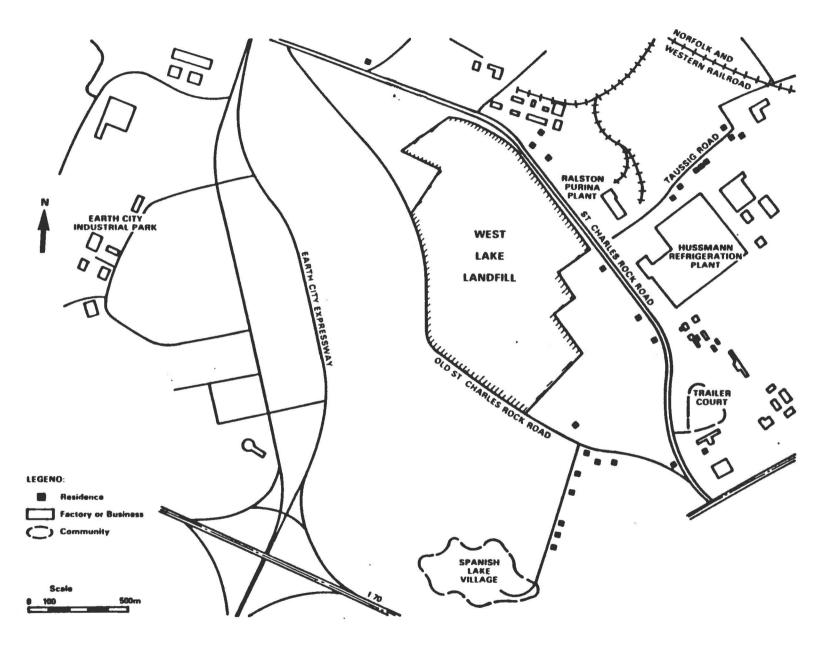


Figure 2.1 Land use around West Lake Landfill site

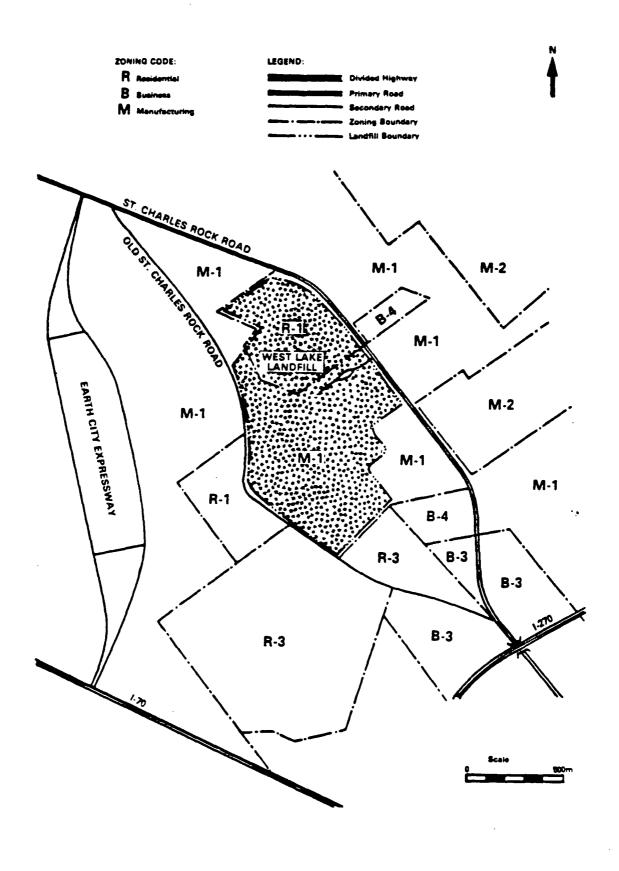


Figure 2.2 Zoning plan of West Lake area (June 1984)

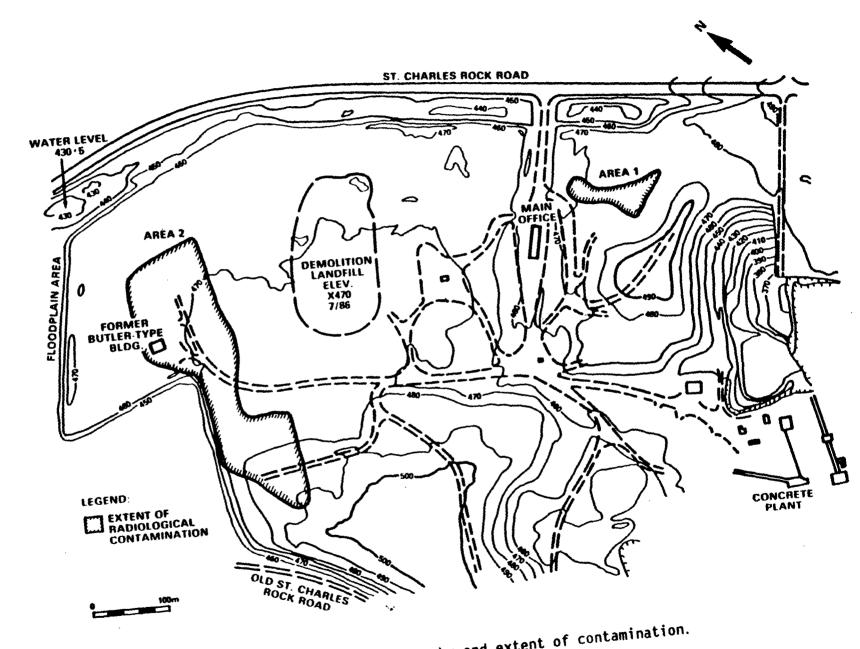


Figure 2.3 Site topography and extent of contamination.

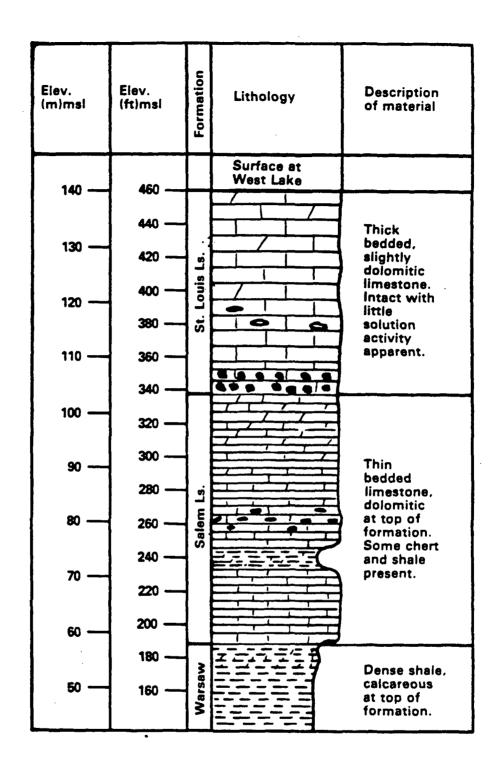


Figure 2.4 Bedrock stratigraphy

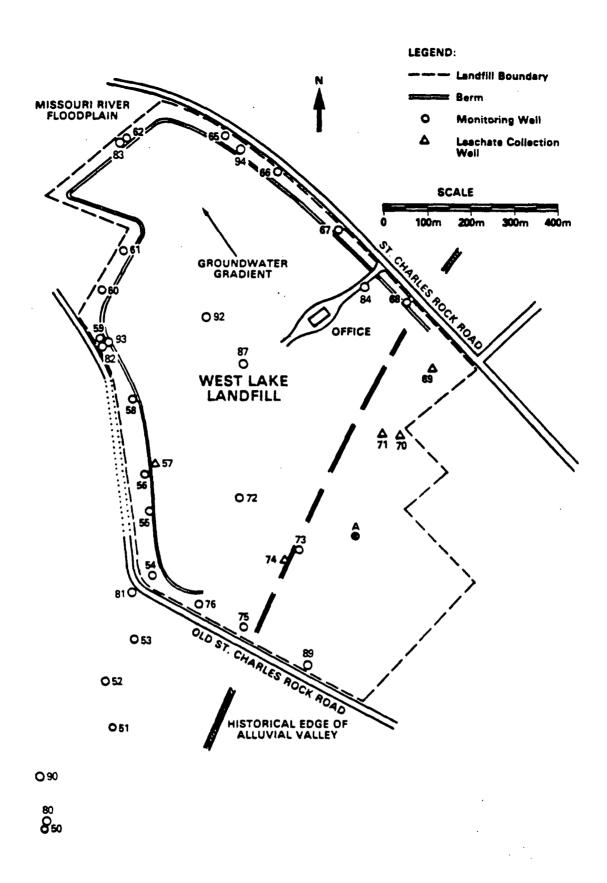


Figure 2.5 Location of monitoring wells

Overall permeability increases	Soil composition	Thickness meters (feet)	Description
		2 - 3 (6.6 - 10)	Silt: clayey at surface, sandy at depth
			Silty sand
		6 - 27 (20 - 89)	Sand with some gravel
			Sandy gravel
			Limestone bedrock

Figure 2.6 Soil profile of river alluvium

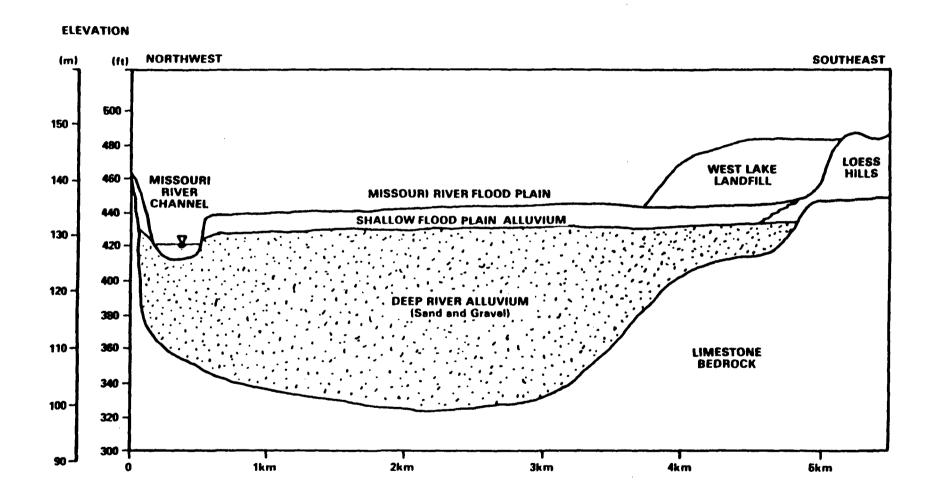


Figure 2.7 Cross-section of Missouri River alluvial valley

Vertical permeability increases	Horizontal permeability increases	Soil composition	Thickness meters (feet)	Description
			2 - 3 (6.6 - 10)	Organic silts and clays (topsoil)
		(-/-	6 - 9 (20 - 30)	Peoria loess, silt
			6 - 15 (20 - 50)	Roxana loess, silty-clay
			5 - 10 (17 - 33)	Well-consolidated clay residium
				Limestone bedrock

Figure 2.8 Soil profile of upland loessal soil

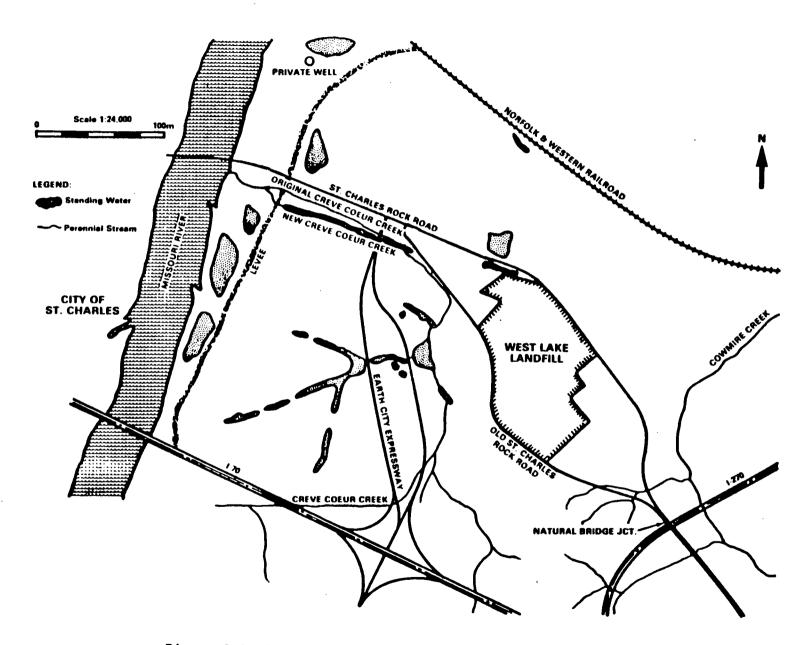
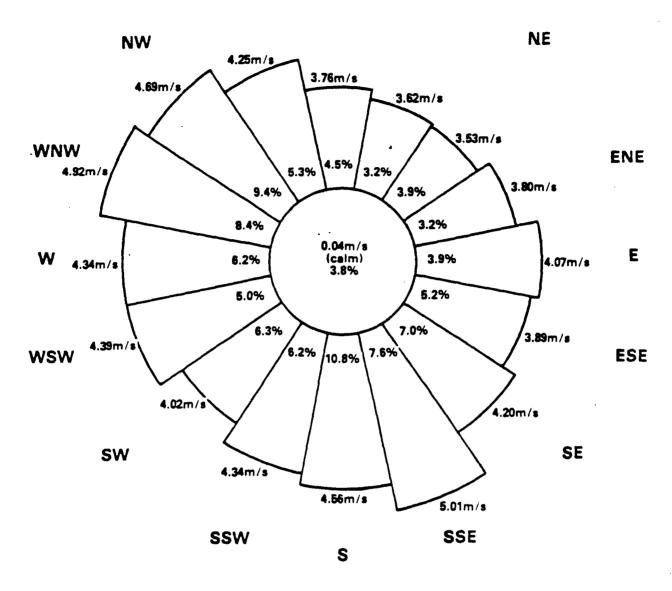



Figure 2.9 Surface hydrology of West Lake area

Figure 2.10 Average monthly precipitation at International Airport Lambert Field

Wind rose is for Lambert Field International Airport, Hazelwood, Missouri, and shows the percentage of hourly observations in each direction along with the average speed in that direction; for example: wind blew from the north 4.5% of the time at an average speed of 3.76 m/s.

Figure 2.11. Wind distribution for West Lake area

3 RADIOLOGICAL CHARACTERIZATION OF THE SITE

3.1 Radiological Surveillance

Approximately 43,000 mt (47,000 tons) of contaminated soil were reported to have been disposed of in the landfill. A fly-over radiological survey performed for the NRC in 1978 identified two areas of contamination at the West Lake Landfill.

Subsequently, from August 1980 through the summer of 1981, the Radiation Management Corporation (RMC), under contract to the NRC, performed an onsite evaluation of the West Lake Landfill (NRC, NUREG/CR-2722). The purpose of this survey was to clearly define the radiological conditions at the landfill. The results were to be utilized in performing an engineering evaluation to determine if remedial actions should and could be taken.

The area to be surveyed was divided into 10-m (33-ft) grid blocks and included the following measurements:

- (1) external gamma exposure rates 1 m (3.3 ft) above the surfaces and betagamma count rates 1 cm (0.4 in.) above surfaces
- (2) radionuclide concentrations in surface soils
- (3) radionuclide concentrations in subsurface deposits
- (4) gross activity and radionuclide concentrations in surface and subsurface water samples
- (5) radon flux emanating from surfaces
- (6) airborne radioactivity
- (7) gross activity in vegetation

3.2 Survey Results

External Gamma

Figure 3.1 shows the two areas of elevated external radiation levels as they existed in November 1980, at the time of the preliminary RMC site survey. As can be seen, both areas contained locations where levels exceeded 100 μ R/hr at 1 m (3.3 ft). In Area 2, gamma levels as high as 3000 to 4000 μ R/hr were detected. The total areas exceeding 20 μ R/hr were about 1.2 ha (3 acres) in Area 1 and 3.6 ha (9 acres) in Area 2.

External gamma levels measured in May and July of 1981 decreased significantly, especially in Area 1, because approximately 1.2 m (4 ft) of sanitary fill was added to the entire area and an equal amount of construction fill was added to most of Area 2. As a result, only a few hundred square meters (a few thousand square feet) in Area 1 exceed 20 μ R/hr. In Area 2, the total area exceeding 20 μ R/hr decreased by about 10%, and the highest levels were about 1600 μ R/hr, near the location of the Butler-type building.

Surface Soil Analyses

A total of 61 surface soil samples were gathered and analyzed on site for gamma activity. Samples were normally stored 10 to 14 days to allow ingrowth of radium daughters. Concentrations of U-238, Ra-226 (from Pb-214 and Bi-214), Ra-223, Pb-211, and Pb-212 were determined for each sample. Surface soil samples are located in Figures 3.2 and 3.3.

In all soil samples, only uranium and/or thorium decay chain nuclides and K-40 were detected. Offsite background samples were on the order of 2 pCi/g Ra-226. Onsite samples ranged from about 1 to 21,000 pCi/g Ra-226, and from less than 10 to 2100 pCi/g U-238. In those cases where elevated levels of Ra-226 were detected, the concentrations of U-238 were generally anywhere from a factor of 2 to 10 lower. In cases of elevated sample activity, daughter products of both U-238 and U-235 were found.

In general, surface activity was limited to Area 2, as indicated by surface beta-gamma measurements. Only two small regions in Area 1 showed contamination; both were near the access road across from the site offices.

In addition to onsite gamma analyses, 12 samples were submitted to RMC's radio-chemical laboratories for thorium and uranium radiochemical determinations. The results show all samples contain high levels of Th-230. The ratio of Th-230 to Ra-226 (Bi-214) is about 20 to 1.

• [

Subsurface Soil Analysis

Subsurface contamination was assessed by extensively "logging" holes drilled through the landfill. Several holes were drilled in areas known to contain contamination, then additional holes were drilled at intervals in all directions until no further contamination was encountered. A total of 43 holes were drilled, 11 in Area 1 and, in Area 2, 32 including 2 nearby offsite wells for monitoring water. All holes were drilled with a 6-in. auger and lined with 4-in. PVC (polyvinyl chloride) casing. The location of these auger holes is shown in Figures 3.4 and 3.5.

Each hole was scanned with an NaI(T1) detector and rate meter system for an initial indication of the location of subsurface contamination. On the basis of the initial scans, 19 holes were selected for detailed gamma logging using the intrinsic germanium (IG) detector and multiple channel analyzer.

The results of the NaI(T1) counts and IG analyses show concentrations of Bi-214, as determined by the IG system, ranged from less than 1 to 19,000 pCi/g. For those holes where both NaI(T1) counts and IG counts were made, a good correlation between gross NaI(T1) counts and Ra-226 concentrations, as determined by in situ analysis of the daughter Bi-214 by the IG system, was found.

It was determined that the subsurface deposits extended beyond areas where surface radiation measurements exceeded 5 pCi/g. The approximate area of subsurface contamination compared to the area of elevated surface radiation levels shows a total difference in areas of 2 ha (5 acres).

The variations of contamination with depth for Areas 1 and 2 are shown in Figure 3.6. As can be seen, the surface elevations vary by about 6 m (20 ft), and the highest elevations occur at locations of fresh fill. Contamination (>5 pCi/g Ra-226) in several areas is found to extend from the surface to appreciable depths, about 6 m (20 ft) below the surface in two cases. In general, the subsurface contamination appears to be a continuous single layer, ranging from 0.6 to 4.6 m (2 to 15 ft) thick, located between elevations of 139 to 144 m (455 to 480 ft) and covering 6.5 ha (16 acres) total area.

In Figures 3.7 and 3.8, representations of the subsurface deposits are provided on the basis of auger hole measurements. These representations are consistent with the operating history of the site, which suggests that the contaminated material was moved onto the site and spread as cover over fill material. Thus, ** one would expect a fairly continuous, thin layer of contamination, as indicated by survey results.

Nonradiological Analysis

Six composite samples were submitted to RMC's Environmental Chemistry Laboratory for priority pollutant analysis. Five samples were taken from auger holes (one from Area 1 and four from Area 2) and the sixth from the West Lake leachate treatment plant sludge. The results indicate a significant presence of organic solvents in Area 2 samples. The results of the leachate sludge analysis were not as high as any of the soil samples.

A chemical analysis of radioactive material from both areas was also performed by RMC's laboratory. Results show elevated levels of barium and lead in most cases.

Background Radioactivity Measurement

Various offsite locations were selected for reference background measurements. The results of these measurements were within the normal range.

Airborne Radioactivity Analyses

Both gaseous and particulate airborne radioactivity were sampled and analyzed during this study. Since it was known that the buried material consisted partially or totally of uranium ore residues, the sampling program concentrated on measuring radon and its daughters in the air. Two methods were used: the first was a scintillation flask method for radon gas and the second was analysis of filter paper activity for particulate daughters.

A series of grab samples using the accumulator method were taken between May and August of 1981. A total of 111 samples from 32 locations was collected. Measurable radon flux levels ranged from 0.2 pCi/m²s in low background areas to 865 pCi/m²s in areas of surface contamination.

At three locations, repetitive measurements were made over a period of 2 months. These results are plotted in Figure 3.9. As can be seen, significant fluctuations were observed at two locations. The fact that these fluctuations were real and not measurement artifacts was later confirmed by duplicate charcoal canister samples, as described below.

A total of 35 charcoal canister samples was gathered at 19 locations over a 3-month period. The results show levels ranging from 0.3 pCi/ m^2 s to 613 pCi/ m^2 s. On 24 different occasions, the charcoal canisters and accumulator were placed in essentially the same locations, at the same time, for duplicate sampling. The results of this side-by-side study show generally good correlation between the two methods.

A set of 10-minute high-volume particulate air samples was taken to determine both short-lived radon daughter concentrations and long-lived gross alpha activity. The highest levels were detected in November 1980, near and inside the Butler-type building which has since been removed. These two samples approximately equal NRC's 10 CFR Part 20, Appendix B, alternate concentration limit of one-thirtieth WL for unrestricted areas.

In addition to the routine 10-minute samples, five 20-minute high-volume air samples were taken and counted immediately on the IG gamma spectroscopy system

to detect the presence of Rn-219 daughters. All samples were taken near surface contamination. In addition to Rn-222 daughter gamma activities, Rn-219 daughters were detected by measuring the low-abundance gamma rays of Pb-211. Concentrations of Rn-219 daughters ranged from 6×10^{-11} to 9×10^{-10} µCi/cc.

Vegetation Analysis

Vegetation samples included weed samples from onsite locations and farm crop samples (winter wheat) near the northwest boundary of the landfill. This location was chosen because runoff from the fill onto the farm field was possible. No elevated activities were found in these samples.

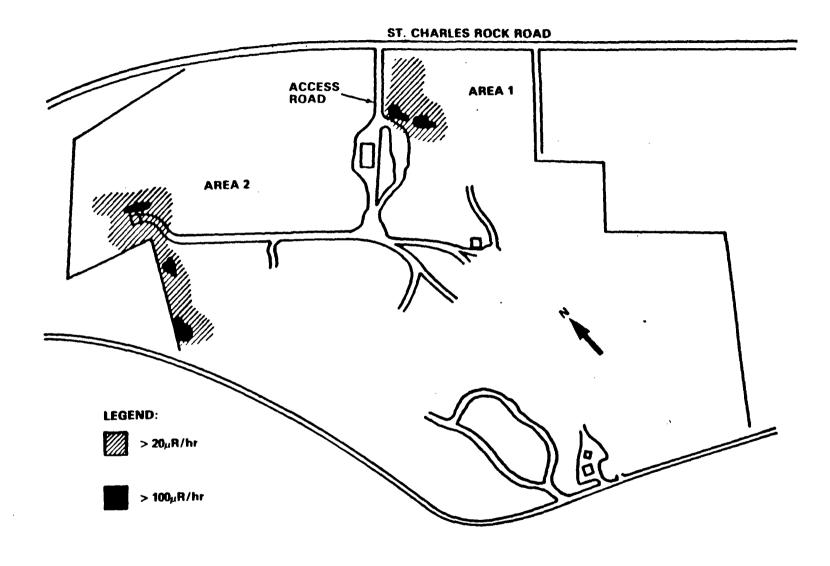
Water Analyses

A total of 37 water samples was taken: 4 in the fall of 1980, and the remainder in the spring and summer of 1981. One sample was equal to the U.S. Environmental Protection Agency (EPA) gross alpha activity standard for drinking water of 15 pCi/liter and that was a sample of standing water near the Butler-type building. Several samples, including all the leachate treatment plant samples, exceeded the EPA drinking water screening level for gross beta which would require isotopic analyses. Subsequent isotopic analyses indicated that the beta activity could be attributed to K-40. None of the offsite samples exceeded either EPA standard or screening level.

In 1981, MDNR collected 41 water samples which RMC analyzed for radioactivity (Table 3.1). Of these samples, 5 were background, 10 were onsite surface water, 10 were shallow groundwater standing in boreholes, and 16 were landfill leachate. From these data, background activity is estimated as 1.2 pCi/liter gross alpha and 27 pCi/liter gross beta. Results in Table 3.1 show the gross alpha in two water samples exceeded or equaled 15 pCi/l; the gross beta in ten water samples exceeded 50 pCi/l. Most of the gross beta activity comes from naturally occurring K-40 as determined from subsequent isotopic analysis.

In addition, groundwater samples in perimeter monitoring wells at the West Lake Landfill were taken by UMC personnel and ORAU in 1983, 1984, and 1986. The well locations are shown in Figure 2.5 and the results are presented in

Tables 3.2 and 3.3. Results in Table 3.2 show the gross alpha in two water samples slightly exceeded 15 pCi/l; the gross beta were all below 50 pCi/l in all water samples. Table 3.3 shows analyses were below 15 pCi/l for gross alpha and 50 pCi/l for gross beta for all the wells.


3.3 Estimation of Radioactivity Inventory

In examining the RMC report for bore hole samples (Table 3.3), it is noted that the naturally occurring U-238 to Th-230 to Ra-226 equilibrium has been disturbed. The RMC report (NRC, NUREG/CR-2722) indicates that the ratio of Ra-226 to U-238 is on the order of 2:1 to 10:1. This observation is consistent with the history of the radionuclide deposits in the West Lake Landfill, i.e., that they came from the processing of uranium ores to extract the uranium content and that the radioactive material at West Lake came from the former Cotter Corporation facility on Latty Avenue (presently occupied by Futura Coatings Company) in Hazelwood, Missouri. This location contains contamination from ore processing residues from which uranium had been previously separated, leaving the daughters behind at relatively higher concentrations. Additionally, it is noted in the RMC report that the ratio of Th-230 to Ra-226 is on the order of 5:1 to 50:1. This indicates that radium has also been removed. Other data are available in the Latty Avenue site study (Cole, 1981). Table 3.4 presents the radionuclide concentrations in Latty Avenue composite samples.

Using the RMC data and averaging the auger hole measurements over the two volumes of radioactive material found in Areas 1 and 2, a mean concentration of 90 pCi/g was calculated for Ra-226. Also, the ratios of Th-230 to Ra-226 were established since the level of Th-230 will determine the increase of Ra-226 with time. Although the ratio of Th-230 to Ra-226 ranged from 5:1 to 150:1, most of the data were in the 30:1 to 50:1 range. To ensure conservatism in estimating the long-term effects of Ra-226, a ratio of 100:1 was used for all further calculations.

Using the Th-230: Ra-226 ratio of 100:1, the Th-230 activity is 9000 pCi per gram. If the U-238 concentration (as well as U-234 which would be similarly separated from the ore) is a factor of 5 less than Ra-226, this implies about 18 pCi U-238 per gram. The total mass of radioactive material (having Ra-226)

concentrations of 5 pCi/g or more) in the landfill was estimated by visually integrating the volume of radioactive material from graphs and multiplying by an average soil density, resulting in 1.5×10^{11} grams (150,000 metric tons) of contaminated soil. These numbers indicate that there are about 14 Ci of Ra-226 contained with its decay products in the radioactive material in the landfill. The material also contains about 3 Ci each of U-238 and U-234, and about 1400 Ci of Th-230. These estimates indicate the order of magnitude of the quantities to be dealt with, although the estimate for Th-230 is regarded as conservatively large.

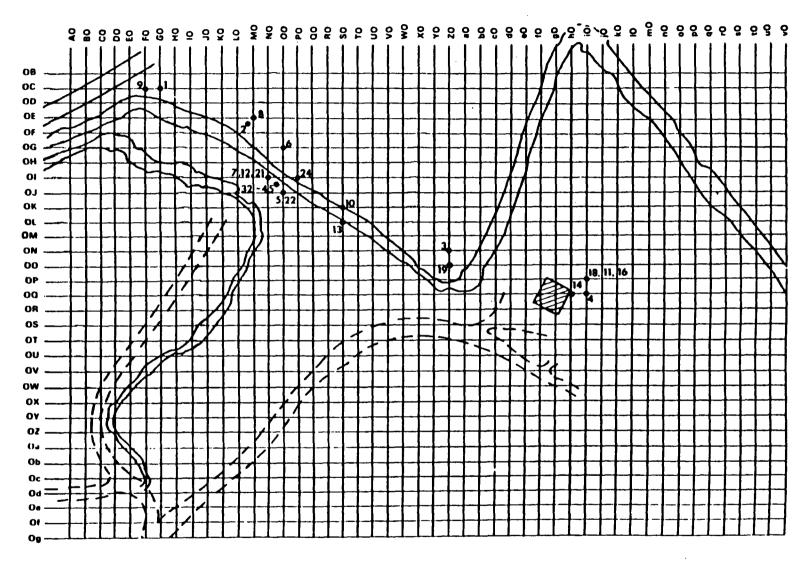

Source: NUREG/CR-2722, Figure 3, p. 27.

Figure 3.1 External gamma radiation levels (November 1980)

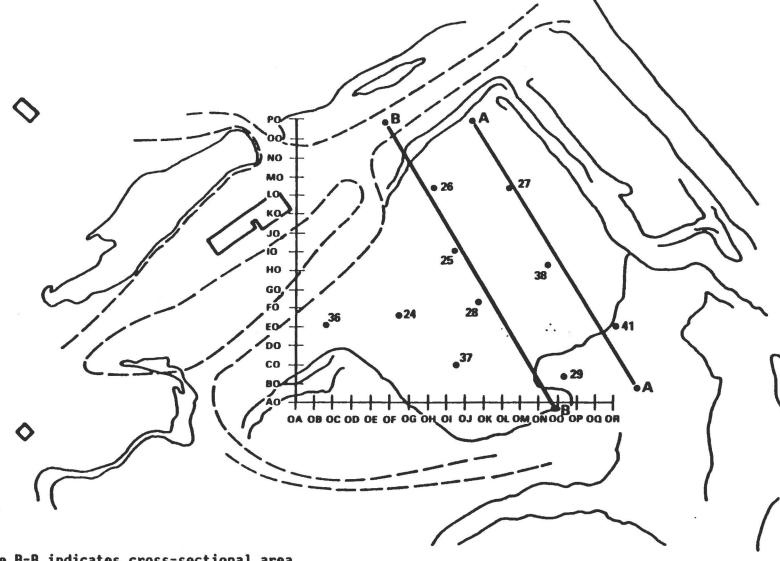
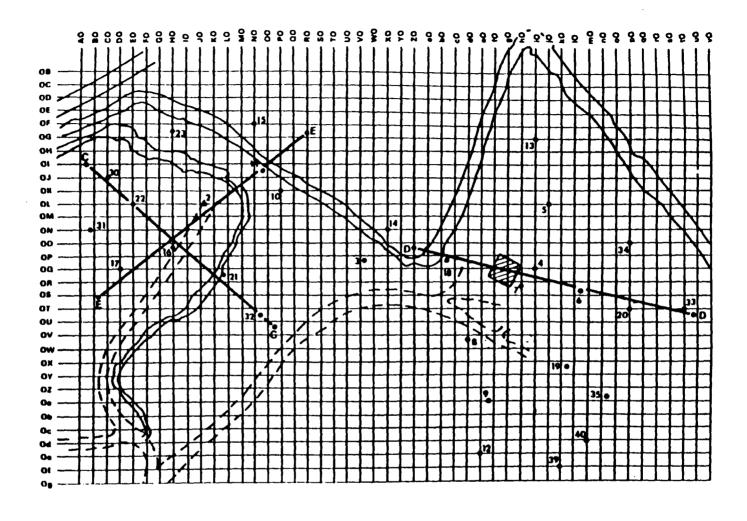

Source: NUREG/CR-2722, Figure 7, p. 31.

Figure 3.2 Location of surface soil samples, Area ${\bf 1}$

Source: NUREG/CR-2722, Figure 8, p. 32.

Figure 3.3 Location of surface soil samples, Area 2

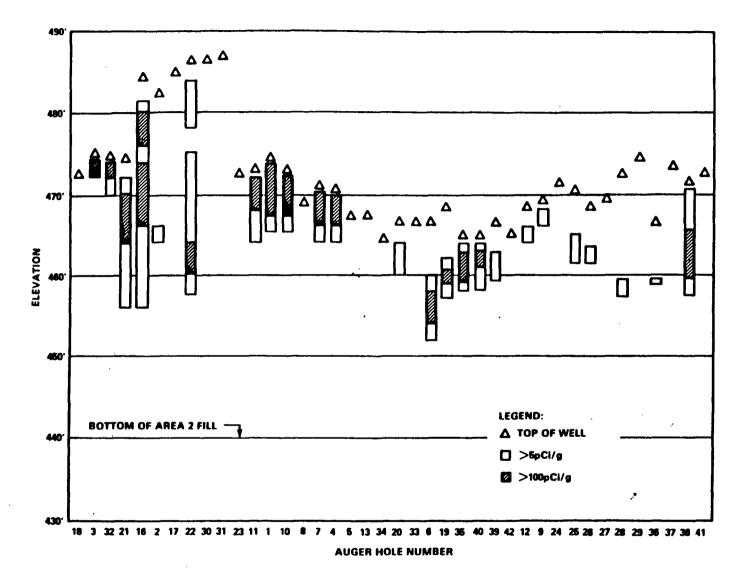


Note: Line B-B indicates cross-sectional area

shown in Figure 3.7.

Source: NUREG/CR-2722, Figure 9, p. 33.

Figure 3.4 Location of auger holes, Area 1



Note: Line E-E indicates cross-sectional area shown in

Figure 3.8.

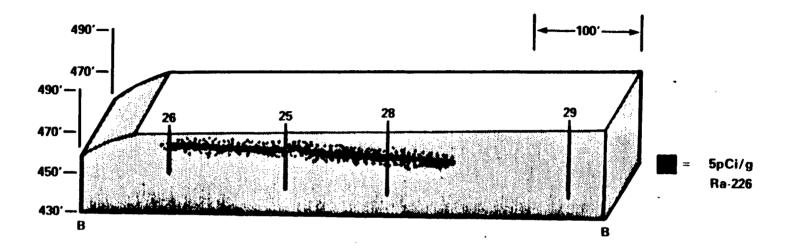
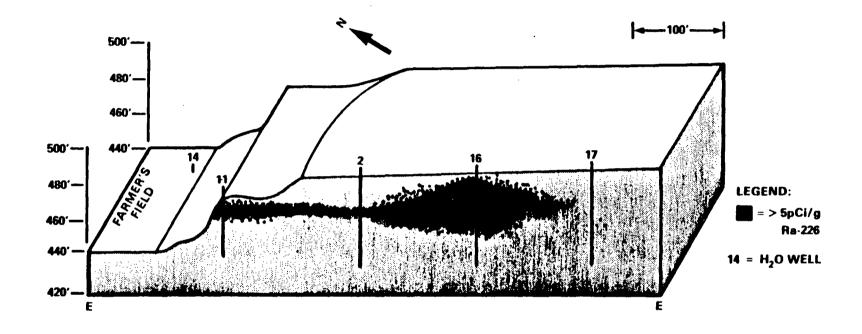

Source: NUREG/CR-2722, Figure 10, p. 34.

Figure 3.5 Location of auger holes, Area 2

Source: NUREG/CR-2722, Figure 14, p. 38.

Figure 3.6 Auger hole elevations and location of contamination within each hole

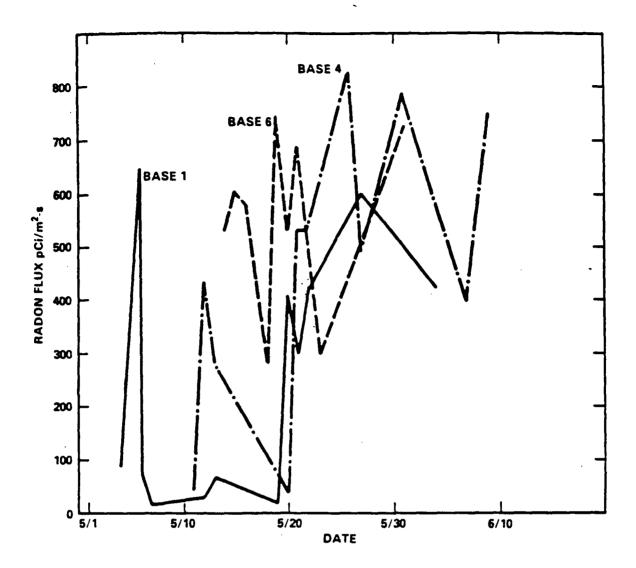


Notes: (1) B-B is defined in Figure 3.4.

(2) The blackened areas indicate the estimated extent of contamination exceeding 5 pCi/g Ra-226, based on surface and auger hole measurements.

Source: NUREG/CR-2722, Figure 16, p. 39.

Figure 3.7 Cross-section B-B showing subsurface deposits in Area 1



Notes: (1) E-E is defined in Figure 3.5.

(2) The blackened areas indicate the estimated extent of contamination exceeding 5 pCi/g Ra-226, based on surface and auger hole measurements.

Source: NUREG/CR-2722, Figure 19, p. 42.

Figure 3.8 Cross-section E-E showing subsurface deposits in Area 2

Source: NUREG/CR-2722, Figure 20, p. 43.

Figure 3.9 Rn-222 flux measurements at three locations in Area 2 (1981)

Table 3.1 RMC radionuclide analyses of water samples from the West Lake site taken by MDNR in 1981

Sample #	Type of sample*	Gross alpha (pCi/l)	Gross beta (pCi/l)
7001 7002 7003 7019 7025 7028 7029 7030 7031	\$ \$ \$ \$ \$ \$ \$ \$ \$	3.11 8.00 1.56 1.91 1.56 45.2 <0.64 0.52 1.43	22.5 23.4 9.88 30.0 36.5 87.8 <1.34 35.1 26.3
7004 7021 7027 7032 7033	B B B B	1.04 1.56 1.04 <0.05 1.04	19.7 29.1 32.5 26.3 29.0
7009 7010 7011 7012 7017 7018 7020 7026 2	6 6 6 6 6 6 6 6 6	4.50 2.60 3.12 7.10 0.52 6.76 8.84 <2.0 15.0 2.9	22.3 15.2 10.6 16.6 33.6 36.1 30.1 38.9 41.0 7.6

See footnote at end of table.

Table 3.1 (Continued)

Type of sample*	Gross alpha (pCi/l)	Gross beta (pCi/l)
L	<3.0	1.30
L	<3.0	130
L	<3.0	103
Ĺ	<3.0	98.9
Ĺ	3.45	107
L .	<3.0	122
Ĺ	<3.0	86.7
Ĺ	<3.0	10.3
Ĺ	<3.0	84.5
Ĺ	<3.0	69.6
L	7.3	80
L	<3.0	26
		Sample* Gross alpha (pCi/l) L <3.0

Sample #	Type of sample*	Ra-226 (pCi/l)	K-40 (pCi/1)	
7014	L	<1.6	138	
7015	Ĺ	3.9	136	
7016	L	<1.6	98.9	
7022	Ë	2.4	104	
7028	S	1.6	124	

^{*}S = surface sample
B = offsite, background
G = groundwater from boreholes
L = leachate

Table 3.2 Radiological quality of water in perimeter monitoring wells of West Lake Landfill (concentrations reported in pCi/l)

Well #	Ra-226	Gross alpha*	Gross beta*	Gross alpha**	Gross beta**
18	_	•	-	12.5	12.5
59	<3	3.2	9.9	•	•
60	-	-	-	20.5	20.8
61	-	-	•	2.7	13.9
62	<3	2.8	7.4	3.5	8.5
63	-	-	-	2.2	7.0
65	<3	12.4	33.1	5.7	6.3
66	<3	4.3	6.9	-	•
67	<3	5 .	5.3	-	-
68	<3	18.2	18.8	-	-
50***	<3	5	7.7	1.3	8.1

***Well #50 used as background.

^{*}Samples taken November 15, 1983.

**Samples taken March 21, 1984, by UMC personnel, analyzed by Environmental Health Lab of St. Louis County Health Department, Clayton, Missouri.

Table 3.3 Radionuclide concentrations in well water samples: May 7-8, 1986

		•	Concentrat	tions (pCi/l)			
Radionuclide	Well 50 ^a	Well 51	Well 52	Well 53	Well 54	Well 55	Well 56
Gross alpha	2.2	2.2	1.9	11	4.4	4.8	5.7
Gross beta	7.5	4.4	7.5	16	14	14	12
Ra-226	b			0.4	en en		0.2
Ra-228			~-	1.7	••		0.3
U-total		+-		22	~~	***	8.9
Th-228				0.5			0.3
Th-230				0.9			0.9
Th-232			· 	0.3	•-		0.8
Depth to water (m)	5.0	3.8	3.2	3.3	15.5	11.5	11.5

Table 3.3 (Continued)

		·	Concentra	Concentrations (pCi/l)				
Radionuclide	Well 58	Well 59	Well 60	Well 61	Well 62	Well 65	Well 66	
Gross alpha	5.8	11	14	3.3	5.6	3.5	1.8	
Gross beta	15	46	19	14	10	7.4	9.9	
Ra-226	0.3	0.3	2.5		0.8			
Ra-228	2.9	0.5	1.6		0.6			
U-total	13	25	19	••	2.3			
Th-228	0.6	0.5	0.5		0.8			
Th-230	1.5	0.2	4.4		1.2		 ·	
Th-232	0.7	0.1	0.1		0.6			
Depth to water (m)	14.0	Not determined	3.5	4.5	4.2	1.9	1.9	

3-2

Table 3.3 (Continued)

		•	Concentrat	ions (pCi/l)	· .		
Radionuclide	Well 67	Well 68	Well 72	Well 73	Well 75	We11 76	Well 80
Gross alpha	8.4	0.9	1.4	6.5	11	3.6	0.4
Gross beta	7.1	1.9	4.6	7.7	22	6.9	3.2
Ra-226	0.7			0.3	**		
Ra-228	0.3			0.9			
U-total	7.4			3.1	16		2.2
Th-228	0.9			1.7	0.6		0.3
Th-230	9.9			6.7	12		0.0
Th-232	0.2			0.2	0.2	 .	0.1
Depth to water (m)	1.5	4.4	10.0	8.4	7.6	13.8	5.3

<u>ယ</u> လှ

Table 3.3 (Continued)

			Concentrat	ions (pCi/l)			_
Radionuclide	Well 81	Well 82	Well 83	Well 84	Well 87	Well 88	Well 89
Gross alpha	7.9	17	9.0	13	1.5	11	3.7
Gross beta	16	47	18	27	7.2	18	9.1
Ra-226	0.8	0.3	3.4	1.7		2.3	
Ra-228	0.4	0.4	4.6	5.8		0.2	
U-total	4.9	13	1.6	9.0		3.0	
Th-228	0.9	0.4	0.2	0.6		1.1	
Th-230	0.9	1.8	0.4	1.3		1.5	
Th-232	0.3	0.3	1.0	1.1		4.0	
Depth to water (m)	4.8	5.1	3.9	7.0	9.4	8.6	7.5

Table 3.3 (Continued)

			Concentrat	ions (pCi/1)	
Radionuclide	Well 90	Well 92	Well 93	Well 94	
Gross alpha	2.2	7.3	7.4	1.6	
Gross beta	6.8	11	22	9.9	
Ra-226		1.0	1.6		
Ra-228		0.8	1.4		
U-total		17	6.0		
Th-228		0.5	0.8		
Th-230		0.1	0.7		
Th-232		0.4	1.6		
Depth to water (m)	4.1	13.1	4.7	2.1	

^aRefer to Figure 2.5 for well location.

 $^{^{\}mathrm{b}}\mathrm{Dash}$ indicates analysis not performed.

Table 3.4 Radionuclide concentrations in Latty Avenue composite samples

			Concentrations (pCi/gm)							
Sample	U-235	U-238	Th-232*	Th-230	Th-228	Ra-226	Ra-228	Pa-231	Ac-227	
Composite 1	3.6 ± 0.3**	82 ± 8	2.3 ± 0.6	8770 ± 100	2.1 ± 0.5	64 ± 1	2.3 ± 0.6	114 ± 2	205 ± 2	
Composite 2	4.4 ± 0.3	62 ± 15	1.5 ± 0.5	8950 ± 370	2.0 ± 0.5	50 ± 1	1.5 ± 0.5	117 ± 8	Not Perfo rm ed	
Average	4.0 ± 0.2	72 ± 9	1.9 ± 0.4	8860 ± 190	2.1 ± 0.3	57 ± 1	1.9 ± 0.4	116 ± 4	205 ± 2	

^{*}Based on Ra-228 and assumption of secular equilibrium of thorium decay series. **Errors are 2 σ based only on counting statistics.

Source: Table 2 (Cole, 1981).

4 APPLICABILITY OF THE BRANCH TECHNICAL POSITION

The NRC has established a Branch Technical Position (BTP) which identifies five acceptable options for disposal or onsite storage of wastes containing low levels of uranium and thorium (46 FR 52061, October 23, 1981). Options 1-4 provide methods under 10 CFR 20.302, for onsite disposal of slightly contaminated materials, e.g., soil, if the concentrations of radioactivity are small enough and other circumstances are satisfactory. The fifth option consists of onsite storage pending availability of an appropriate disposal method. Table 4.1 shows the radionuclide concentrations specified for the disposal options.

The material present in the West Lake Landfill is a form of natural uranium with daughters, although the daughters are not now in equilibrium. As mentioned above, the average concentration of Ra-226 in the West Lake Landfill wastes is about 90 pCi per gram, which (considered by itself) falls into Option 4 of the BTP since Option 4 criteria are controlled by the Ra-226 content in the wastes (i.e., 200 pCi of U-238 plus U-234 per gram would be accompanied by 100 pCi of Ra-226 per gram). However, because of the large ratio of Th-230 radioactivity to that of Ra-226, the radioactive decay of the Th-230 will increase the concentration of its decay product Ra-226 until these two radionuclides are again in equilibrium. Assuming the ratio of activities of 100:1 used above, the Ra-226 activity will increase by a factor of five over the next 100 years, by a factor of nine 200 years from now, and by a factor of thirty-five 1000 years from now. All radionuclides in the decay chain after Ra-226 (and thus the Rn-222 gas flux) will also be increased by similar multiples. Therefore, the long-term Ra-226 concentration will exceed the Option 4 criteria.

Table 4.1 Summary of maximum soil concentrations permitted under disposal options

Source: 46 Federal Register 52061

	Disposal options					
Kind of material	1 ^a	2 ^b	3 ^C	4 ^d		
Natural thorium (Th-232 + Th-228) with daughters present and in equilibrium. (pCi/g)	10	50	-	500		
Natural uranium (U-238 + U-234) : with daughters present and in equilibrium. (pCi/g)	10	-	40	200		

^aBased on EPA uranium mill tailings cleanup standards.

^bConcentrations based on limiting individual intruder doses to 170 mrem per year.

^CConcentration based on limiting equivalent exposure to 0.02 WL or less.

dConcentrations based on limiting individual intruder doses to 500 mrem per year and, in cases of natural uranium, limiting exposure to Rn-222 and its decay product airborne alpha emitters to 0.02 WL or less.

5 REMEDIAL ACTION ALTERNATIVE CONSIDERATIONS

The radioactive material as it presently exists does not pose an immediate health hazard for individuals living or working in the area of the landfill. However, there is a long-term potential for the radioactive material to pose a health problem. Therefore, this section discusses six (A-F) possible courses of action, of which all but A and D are considered temporary. Option A, in which no remedial action is proposed, is unacceptable because the concentrations of radionuclides in the landfill will become too high; Option A is described for comparison purposes only. Costs are based on the Dodge Guide to Public Works and Heavy Construction, 1984.

5.1 Option A: No Remedial Action

Under Option A, no remedial work would be done on the West Lake site. The land-fill and the radioactive soil would be left in their present condition. The contaminated areas would be available for demolition fill emplacement and final closure. It is not certain how much additional fill would be emplaced. Filling would be followed by normal landfill closure operations.

Normal closure procedures consist of applying at least 0.61 m (2 ft) of compacted final cover. A 0.3-m (1 ft) layer of topsoil would be placed over the cover and upgraded to support vegetation. Establishment of a vegetative cover would require seeding, liming, and fertilization. Surface seeps of leachate would be eliminated. Maintenance of the monitoring wells would be required to allow continued sampling by MDNR, should MDNR require such action. The public would be discouraged from entering the site. After closure, a detailed description of the site would be filed with the County Recorder of Deeds. This description would include: a legal description of the site, types and location of wastes present, depth of fill, and description of any environmental control or monitoring systems requiring future maintenance (MDNR, January 1983). MDNR regulations also specifically prohibit excavation or disruption of the closed landfill without written approval of MDNR; no time frame is stated with this regulation (MDNR, 1975).

There would be no further cost under this option since no remedial actions would be taken; i.e., costs are normal landfill costs.

5.2 Option B: Stabilization on Site With Restricted Land Use

Two areas in the landfill contain radioactive material. Therefore, the work required for this option is described separately for each area. Nevertheless, restrictions would be imposed on the use of land within each area. This would discourage future activities on these areas which might expose individuals to radioactivity. No additional landfill would be permitted to be deposited on either area.

Area 1

It is believed that a total of 2 to 3 m (7 to 10 ft) of soil has been added to most of Area 1 since the 1981 land survey by RMC. This cover has altered the radiation environment of the site. Measurements by Oak Ridge Associated Universities (ORAU) personnel in March 1984 (Berger) showed that only a very small area exceeded the exposure rate of 20 µR/hr at 1 m. By extending the cover 20 m (66 ft) outward in all directions from the area showing an unacceptable surface exposure rate, the shallow wastes likely to give high rates of radon emanation will also be covered. The amount of radioactive debris in Area 1 is relatively minor compared with that present in Area 2. Therefore, a soil cover of 1.5 m (5 ft) is considered adequate to reduce surface exposure rates and radon emanation. After the soil cover is in place, a layer of topsoil 0.3 m (1 ft) thick would be emplaced, seeded, and mulched.

Area 2

Vegetation over Area 2 as well as on the slope of the berm would be cleared and placed in the demolition portion of the landfill or disposed of as is convenient. Brush should not be left in place and covered since this may reduce the integrity of the soil cap. Grass should be mowed, and may be left in place.

The berm on the northwest portion of the landfill which contains an estimated $7,500 \text{ m}^3$ (9,800 yd³) of contaminated soil would be excavated and redeposited in

layers in a secure portion of the landfill. The actual amount can be determined by survey during implementation of the work.

All equipment and materials now stored over Area 2 would be removed to other portions of the site or disposed of as is convenient to the owners. Gravel piles found on Area 2 should be removed to other portions of the site after having been surveyed to ensure that contaminants have not been mixed with the gravel. However, the lower 10 to 15 cm (4 to 6 in.) of rock should be left in place and covered with the soil cap, since this gravel may have become mixed with contaminated soil.

Such stabilization would place the contaminated soil well below the surface and would prevent radioactive materials from eroding as can now occur along sections of the berm. Stabilization would require emplacement of a soil cover of 48,000 m³ (63,000 yd³) to give a final slope of 3:1 with 1.5 m (5 ft) of soil at the top of the berm. At least 1.5 m (5 ft) of soil cover would be used, as this much soil will be required to reduce radon gas exhalation. The final slope of 3:1 on the berm would be shallow enough to prevent failure and, after the cover is emplaced, it should be further covered with at least 0.3 m (1 ft) of topsoil and seeded with native grasses to prevent erosion. The slope would be directed radially outward from the center of the cap. An interceptor ditch would be provided around the cap to channel runoff and prevent gullies from being cut into the stabilized cover. The cover soil presently used in the landfilling operations may be used to stabilize the berm. This soil is a clay silt (loess) excavated near the West Lake Landfill site.

The portion of Area 2 to be covered by the soil cap includes that portion of the landfill identified in the RMC survey as having surface exposure rates greater than 20 μ R/hr at 1 m (3.3 ft) above ground level, along with those areas in which auger holes revealed radium-bearing soil within 1 m of the surface. The shallow contaminants may be sufficiently shielded to produce low surface exposure rates; however, these shallow deposits will still produce radon emanations greater than the desired level of 20 pCi/m²s. Therefore, the soil cover must be extended over these areas of shallow contamination.

The cover soil used should be capable of compaction to a permeability of less than 10^{-7} cm/s in order to keep radon release and soil leaching as low as possible. This value is based on common practices used for sealing of hazardous waste landfills. Because accurately measuring permeability of this magnitude is difficult, the value of 10^{-7} cm/s should be used only as a target criterion which should, if possible, be bettered. If laboratory testing of the cover soil presently used at the West Lake Landfill indicates that this permeability can be achieved, this soil would be acceptable for use as the soil cap. Otherwise, clay soil would have to be imported from off the site to be used in constructing the soil cap.

The overall estimated cost for the required work under Option B is approximately \$360,000 (Table 5.1) and would require about 2 months to complete. Costs of this option may be higher if the total quantity of contaminated material to be moved is higher than the estimated quantity.

5.3 Option C: Extending the Landfill Off Site

Soil eroding on the northwest berm of Area 2 is carrying contaminated soil off the landfill property onto an adjacent cultivated field. A contributing factor to the erosion is the steepness of the berm. It would, therefore, be desirable to lessen the slope's steepness by extending the berm onto the adjacent field. This option would require the acquisition of approximately 2 ha (5 acres) of land not owned by the landfill company.

In this option, Area 1 would be treated the same as in Option B. The contaminated portion of the northwestern berm of Area 2 would not be disturbed. Instead the existing berm would be extended 13 to 16 m (42 to 52 ft) onto the adjacent field. This would require an additional solid volume of approximately 20,200 m^3 (26,400 yd^3) to give a final slope of 3:1 with 1.5 m (5 ft) of soil on top of the berm. As in Option B, this cover should receive an additional 0.3 m (1 ft) of topsoil and be seeded with native grasses to prevent erosion.

This option will require the relocation of three transmission poles. All other necessary work for Option C is as described for Option B.

The overall estimated cost for required work under Option C is approximately \$470,000 (Table 5.2) and would require about 2 months to complete. The extent of work required under this option is well defined.

5.4 Option D: Removing Radioactive Soil and Relocating It

This option would involve excavating and removing all contaminated soil and debris from the West Lake Landfill and relocating it to an authorized disposal facility.

Vegetation over Areas 1 and 2 would be cleared and placed in the demolition portion of the West Lake Landfill.

All equipment stored on the two contaminated areas would be removed to another portion of the site. Gravel piles in Area 2 should be removed. The lower 10 to 15 cm (4 to 6 in.) of rock should be left in place to be disposed of with other contaminated materials, since this gravel may have become mixed with contaminated soil at the surface.

The areas known to contain radioactive contamination at levels above the action criteria (20 μ R/hr at 1 m) would be excavated initially. Next, the excavated area would be surveyed to determine the extent of contamination remaining. Excavation would continue until unacceptable levels of contamination have been removed. Immediately after excavation, the soil would be placed in 208-liter (55 gal) approved drums (or other approved containers) for transport. Containment in the drums will prevent the spread of dust and loose soil during transport.

Some of the nonradiological hazardous material known to be present in the landfill could present a serious danger to workers should they excavate into this material. Proper precautions should, therefore, be taken as the work is being performed.

Estimated costs under Option D would be \$2,500,000 (Table 5.3). Transporting the contaminated soil to another site and emplacing the material there would significantly add to the cost. This option could be completed in about

3 months, providing that a suitable disposal facility were available to receive the contaminated waste.

5.5 Option E: Excavation and Temporary Onsite Storage in a Trench

Under this option, as much radioactive soil would be excavated as in Option D and would be placed in a specially prepared trench on the West Lake site but would not be placed in drums. This trench would become a temporary repository for the radioactive soil. The trench would be surrounded by an impervious clay liner to minimize leachate production and transport into the groundwater system. The cap should give acceptable rates of surface exposure and acceptable rates of radon gas release.

As under Option D, surface vegetation, machinery, and piles of crushed rock would be removed from the surface of areas to be excavated. Design of the trench is based upon the "secure landfill concept" (Shuster and Wagner, 1980) with three primary functions: eliminate direct gamma-ray exposure at the ground surface, reduce radon emanation, and prevent leaching of radionuclides to the groundwater system.

The excavated area would be cut to a maximum elevation of 140 m (460 ft) ms1 over the area to be covered by the trench. The base of the trench would cover an area 120×120 m (394 x 394 ft) and would have a negligible slope. Low spots would be filled with borrow soil* compacted to at least 90% of its standard Proctor density (SPD). Once the base for the trench has been leveled to a final elevation of about 140 m (460 ft) msl, a blanket of borrow soil at least 1.5 m (5 ft) thick compacted to at least 90% SPD would be emplaced. Specification of compaction of this underlayer is based on the requirement of avoiding subsidence which could cause the clay liner to crack and fail. A clay liner would be placed above the underlayer. The liner would be 0.5 m (1.6 ft) thick and would have a permeability less than 10^{-8} cm/s ($4 \times 10^{-9} \text{ in./s}$). An impermeable plastic liner could also be used.

^{*}Borrow soil refers to a clayey-silt loess (Soil Conservation Service type CL) excavated southeast of the site for use as daily cover in the landfilling operation.

Sides of the trench would be built at a 3:1 slope up to the level of the surrounding undisturbed landfill surface, about 143 m (470 ft) msl. The walls would consist of an underlayer and liner as described for the base. A layer of crusher-run limestone 0.5 m (1.6 ft) thick would be placed on top of the liner to allow leachate buildup in the trench to be monitored and to facilitate pumping should leachate buildup become a problem.

After the base and walls of the trench have been built, the previously excavated debris would be placed in the trench. Then the remaining radioactive debris would be excavated and placed in the trench. As excavation proceeds, it will become apparent how much volume the trench must have to contain all the contaminated soil. At this point, the walls of the trench would be raised to an appropriate level. Excavation and filling can then proceed until the work is complete. The final thickness of debris is expected to be from 4 to 6 m (13 to 20 ft).

A cover, as described below, would be placed over the debris. A 1 m (3 ft) layer of borrow soil compacted to 90% SPD will be placed over the debris. A clay liner 0.5 m (1.6 ft) thick of permeability less than 10^{-8} cm/s (4 x 10^{-9} in./s) would be placed over the borrow soil blanket. A 0.5-m (1.6-ft) layer of crusher-run limestone would be placed over the clay layer to prevent infiltration water from building up over the liner. A cover soil layer of average thickness about 2 m (7 ft) would be placed over the rock layer.

The cover soil would be compacted and built with a surface slope of from 2% to 4% to minimize erosion. Three-tenths of a meter (1 ft) of top soil would be placed over the cover layer and would be seeded and mulched to establish a vegetative cover.

Once the trench has been prepared to accept the soil, workers may begin to excavate contaminated soil. As under Option C, an initial excavation would remove the area of known contamination, and a cleanup phase would remove all soil containing radionuclide concentrations above an action level of 15 pCi/g Ra-226. As soon as the soil has been excavated, it would be hauled to the trench and emplaced. The contaminated soil should be sufficiently compacted to

prevent settling, to maintain the integrity of the soil cap. As fill is being emplaced, the pipe for a monitoring well would be extended upward from the base of the gravel underdrain. This well should be designed in a manner that would allow future installation of a pump for drawing off leachate should this become necessary.

Costs for Option E would be approximately \$2,150,000 (Table 5.4). The estimated costs vary somewhat, since the exact limits of excavation cannot be defined until work begins. This work would require approximately 4 months to complete.

5.6 Option F: Construction of a Siurry Wall to Prevent Offsite Leachate Migration

Under Option F, radioactive soil would be left in place at the West Lake site. The wastes would be stabilized by means of a soil cover (as under Option B) and a downgradient slurry wall would be built around the contaminated soil. The slurry wall would be intended to keep leachate from migrating off site. This remedial action would be somewhat more effective than Option B in reducing the potential for groundwater contamination. However, costs incurred would be substantially higher than those for Option B or C. Benefits would be rearly identical to those derived by the soil cover and berm stabilization alone; the sole advantage of Option F over Option B or C would be greater protection to groundwater in the Missouri River alluvium.

×

Vegetation, machinery, and piles of crushed rock would have to be removed as described for Option B. A slurry wall would be constructed by excavating a trench [approximately 1 m (3.3 ft) wide] to the depth of bedrock. This trench would be bored out in the presence of a mud weighted with bentonite (clay) to keep the walls from collapsing and to keep groundwater from intruding into the trench. The trench would be excavated in sections 6 to 8 m (20 to 26 ft) long. Once a section of trench has been excavated, concrete would be poured by tremie into the trench to displace the slurry. The final slurry walls would each consist of a concrete slab about 1 m (3.3 ft) thick extending to bedrock and partially encircling the bodies of radioactive soil in both Areas 1 and 2. A total of approximately 1300 linear meters (4,300 ft) of wall would be constructed to depths varying from 5 to 15 m (16 to 50 ft).

After each of the slurry walls had been emplaced, fill would be added along the face of the berm to stabilize the slope. Finally, a soil cover would be placed over the contaminated areas. The berm would be stabilized and the soil cover would be placed as outlined for Option B.

Costs of work required for Option F would be approximately \$5,600,000 (Table 5.5). The exact amount of slurry wall cannot be determined until work is begun; therefore, this cost will be highly variable. Since the walls should extend to bedrock, the depth of soil and landfill debris will govern the depth of the required wall. Slight errors in estimating the depth of alluvium could result in large errors in the cost estimate. It is estimated that it would take 6 to 8 months to complete this option.

Table 5.1 Itemized cost of remedial action, Option B

Item	Quantity	Unit price	Cost	Reference
Clearing and grubbing	2.9 ha	\$1850/ha	\$ 5,365	*
Remove Shuman Building			\$ 6,200	**
Excavate contaminated soil and redeposit it at a secure site	7500 m³	\$10/m³	\$ 75,000	†
Emplace soil cover	48,000 m ³	\$4.64/m³	\$222,720	Ť
Bury clean rubble	225 m³ .	\$12.50/m³	\$ 2,812	†
Seed and mulch cover Subtotal	3.3 ha	\$2165/ha	\$ 7,145 \$319,242	*
Contingency @ 10%			31,924	
Engineering and legal fees @ 5%			15,962	
Estimated total cos	t		\$360,000 ^{††}	

^{*}Dodge Guide to Public Works and Heavy Construction, 1984.

^{**}Ford, Bacon and Davis Utah, Inc., "Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri," NRC Contract No. NRC-02-77-197, 1978. (This Butler-type building has already been removed.)

[†]Based on best estimated cost.

^{††}Adjusted for deletion of building removal.

Table 5.2 Itemized cost of remedial action, Option C

Item	Quantity	Unit price	Cost	Reference
Clearing and grubbing	2.9 ha	\$1850/ha	\$ 5,365	*
Remove Shuman Building			\$ 6,200	**
Relocate power transmission poles	3	\$2060	\$ 6,180	†
Stablize berm (fill)	20,200 m ³	\$6.70/m³	\$135,340	t
Emplace soil cover	48,000 m ³	\$4.64/m³	\$222,720	t
Bury clean rubble	225 m³	\$12.50/m³	\$ 2,812	†
Seed and mulch cover Subtotal	3.3 ha	\$2165/ha	\$ 7,145 \$385,762	*
Contingency @ 10%			38,576	
Engineering and legal fees @ 5%			19,290	
Land acquisition Estimated total cost		\$15,500/ha	31,000 \$470,000	,

^{*}Dodge Guide to Public Works and Heavy Construction, 1984.

^{**}Ford, Bacon and Davis Utah, Inc., "Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri," NRC Contract No. NRC-02-77-197, 1978. (This Butler-type building has already been removed.)

[†]Based on best estimated cost.

Table 5.3 Itemized cost of remedial action, Option D

Item	Quantity	Unit price	Cost	Reference
Clearing and grubbing	2.9 ha	\$1850/ha	\$ 5,365	*
Remove Shuman Building			\$ 6,200	**
Bury clean rubble	230 m ³	\$12.5/m ³	\$ 2,875	†
Excavate contaminated soil	70,000 m ³	\$5.25/m ³	\$ 367,500	†,††
Site decontamination	27,600 m ³	$1.4/m^2$	\$ 38,640	***
Packing waste for transportation	70,000 m ³	\$25/m ³	\$1,750,000	†
Subtotal			\$2,170,580	
Contingency @ 10%	•		217,058	
Engineering and legal fees @ 5%			108,529	
Estimated total cost			\$2,500,000	***

^{*}Dodge Guide to Public Works and Heavy Construction, 1984.

^{**}Ford, Bacon and Davis Utah, Inc., "Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri," NRC Contract No. NRC-02-77-197, 1978. (This Butler-type building has already been removed.)

^{***}No costs have been included here for moving the waste, for emplacing it and for disposal facility users fees.

[†]Based upon best estimate.

^{††}Estimated quantity of soil having Ra-226 concentrations of 15 pCi/g or more.

Table 5.4 Itemized cost of remedial action, Option E

Item	Quantity	Unit price	Cost	Reference
Prepare secure trench	80,000 m ³	\$9/m ³	\$ 720,000	*
Clearing and grubbing	2.9 ha	\$1,850/ha	\$ 5,365	*
Remove Shuman building			\$ 6,200	**
Bury clean rubble	230 m ³	\$12.5/m ³	\$ 2,875	*
Excavate contaminated soil	70,000 m ³	\$5.25/m ³	\$ 367,500	*
Site decontamination	27,600 m ³	\$1.40/m ³	\$ 38,640	†
Emplace contaminated soil	70,000 m ³	\$10.3/m ³	\$ 722,200	*
Monitoring well			\$ 6,000	*
Seed and mulch cover Subtotal	0.08 ha	\$2,165/ha	\$ 200 \$1,868,980	†
Contingency @ 10%			186,900	
Engineering and legal fees @ 5%			93,450	,
Estimated total cost			\$2,150,000	

^{*} Dodge Guide to Public Works and Heavy Construction, 1984.

^{**}Ford, Bacon and Davis Utah, Inc., "Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri," NRC Contract No. NRC-02-77-197, 1978. (This Butler-type building has already been removed.)

[†] Based on best estimate.

Table 5.5 Itemized cost of remedial action, Option F

Item	Quantity	Unit price	Cost	Reference
Clearing and grubbing	2.9 ha	\$1,850/ha	\$ 5,365	*
Remove Shuman building		•	\$ 6,200	**
Relocate power transmission poles	7 poles	\$2,060/@	\$ 14,420	†
Construct slurry wall	11,000 m ²	\$402/m²	\$4,422,000	*
Stabilize berm	20,200 m ³	\$6.70/m ³	\$ 135,340	Ť
Emplace soil cap	48,000 m ³	\$4.64/m ³	\$ 222,720	†
Bury clean rubble	225 m ³	\$12.5/m ³	\$ 2,812	†
Seed and mulch cover Subtotal	3.3 ha	\$2,165/ha	\$ 7,145 \$4,816,002	*
Contingency @ 10%			481,600	
Engineering and legal fees @ 5%			240,800	
Land acquisition Estimated total cost	2 ha	\$15,500/ha	31,000 \$5,600,000	•

^{*}Dodge Guide to Public Works and Heavy Construction, 1984.

^{**}Ford, Bacon and Davis Utah, Inc., "Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri," NRC Contract No. NRC-02-77-197, 1978. (This Butler-type building has already been removed.)

[†]Based on best estimate.

6 REFERENCES

Berger, James D., <u>Survey of West Lake Site by Oak Ridge Associated Universities</u>, March 6, 1984.

Cole, L. W., <u>Radiological Evaluation of Decontamination Debris Located at the Futura Coatings Company Facility</u>, Oak Ridge Associated Universities, September 1981.

Dodge Guide to Public Works and Heavy Construction, 1984.

Emmett, L. F., and Jeffery, H. G., <u>Reconnaisance of the Groundwater Resources</u> of the <u>Missouri River Alluvium Between St. Charles and Jefferson City, Missouri, Hydrol</u>. Inv. Atlas Ha-315, U. S. Geological Survey, Washington, D. C., 1968.

Ford, Bacon and Davis Utah, Inc., <u>Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri,</u> NRC Contract No. NRC-02-77-197, Salt Lake City, Utah, 1978.

Freeze, R. A., and John Cherry, <u>Groundwater</u>, Prentice-Hall, Englewood Cliffs, N. J., 1979.

Goodfield, A. G., <u>Pleistocene and Surficial Geology of St. Louis and the Adjacent St. Louis County, Missouri</u>, University of Illinois, Ph.D. thesis, 1965.

Karch, Kenneth M., Director, Division of Environmental Quality, Missouri Department of Natural Resources, letter dated June 2, 1976, to James G. Keppler, Regional Director, NRC, June 2, 1976.

Long, James H., Director, Laboratory Services Program, <u>Report</u>, Missouri Department of Natural Resources, November 5, 1981.

Lutzen, Edwin E., Rockaway, John D., Jr., <u>Engineering Geology of St. Louis County</u>, <u>Missouri</u>, <u>Missouri</u> Geology Survey and Water Resources, Engineering Geological Series No. 4, Rolla, MO, 1971.

Martin, James A., and Jack S. Wells, <u>Guidebook to Middle Ordivician and</u>
<u>Mississippian Strata</u>, St. <u>Louis and St. Charles Counties</u>, Missouri Geological Survey, Report of Investigation #34, 1966.

Miller, D. E., "Water", <u>The Resources of St. Charles County, Missouri</u>, <u>Land, Water, and Minerals</u>, Wallace B. Howe and L. D. Fellows, eds., Missouri Geological Survey, Rolla, MO., 1977, pp. 31-82.

Missouri Dept. of Natural Resources, Technical Bulletin concerning landfill closure, January 1983.

Reitz and Gens, Engineering Firm, Letter to Mr. Curtis Doe, Staff Engineer, Missouri Department of Natural Resources, June 20, 1983a.

Shuster, Edward R., and Louis E. Wagner, "The Role of the Secure Landfill in Hazardous Waste Management," in <u>Toxic and Hazardous Waste Disposal</u>, Vol. 4, Robert B. Pojasek, ed., Ann Arbor Science Publishers, 1980.

- Spreng, Alfred C., "Mississippian System", <u>The Stratigraphic Succession in Missouri</u>, John W. Koenig, ed., Missouri Survey and Water Resources, Vol. XL, 2nd series, 1961, p. 49-78.
- U. S. Department of Agriculture, Soil Conservation Service, Aerial Photograph No. TQ-2K, Frame 51, 1953.
- U. S. Dept. of Commerce, Environmental Data Service, <u>Climatological Data</u>, Vol. 66, No. 13, 1960.
- U. S. Nuclear Regulatory Commission, "Environmental Impact Appraisal Related to Further Decontamination Action at the Latty Avenue Site," Docket No. 40-8035 (draft report), 1981.
- U. S. Nuclear Regulatory Commission, NUREG/CR-2722, "Radiological Survey of the West Lake Landfill St. Louis County, Missouri," May 1982.
- U. S. Nuclear Regulatory Commission, "Disposal or Onsite Storage of Thorium or Uranium Wastes From Past Operations, Branch Technical Position"
 46 FR 52061, October 23, 1981.

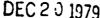
A EG: G ENERGY MEASUREMENTS GROUP

EGG-1183-1721 UC-41 SEPTEMBER 1979

AN AERIAL RADIOLOGICAL SURVEY OF THE AREA SURROUNDING THE

MALLINGIARODT NUGLEAR MARYLAND HEIGHTS FACILITY

AND TWO ADDITIONAL SITES


ST. LOUIS, MISSOURI

DATE OF SURVEY: OCTOBER 1977

MIX 0010

Exhibit 14-F

AN AERIAL RADIOLOGICAL SURVEY OF THE AREA SURROUNDING THE

MALLINCKRODT NUCLEAR MARYLAND HEIGHTS FACILITY

AND

Two additional sites

ST. LOUIS, MISSOURI DATE OF SURVEY: OCTOBER 1977

> L. K. Hilton **Project Scientist**

· East

APPROVED FOR PUBLICATION

T. P. Stuart, Manager

Remote Sensing Sciences Department

This Document is UNCLASSIFIED

G. P. Stobie

Classification Officer

This work was performed by EG&G for the United States Nuclear Regulatory Commission through an EAO transfer of funds to Contract No. DE-ACO8-76NVO1183 with the United States Department of Energy.

ABSTRACT

An aerial radiological survey to measure terrestrial gamma radiation was carried out over the Mallinckrodt Nuclear Maryland Heights Facility during October 1977.

At the same time the following properties were also surveyed: a parcel near 9200 West Latty Avenue, which included a portion of St. Louis International Airport; and land used by West Lake Landfill, Inc., which is 8 km northwest of the airport.

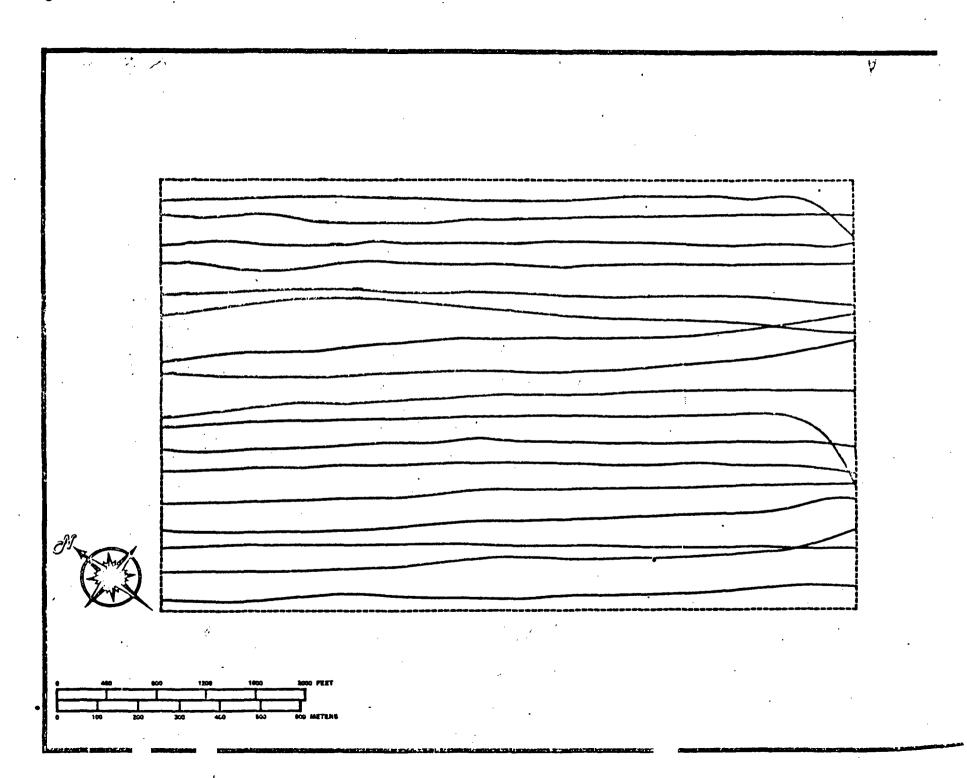
Gamma ray data were collected by flying parallel lines 60 m apart. The total area surveyed over the three sites was 7.4 km².

Processed data indicated that detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters, except at certain locations described in this report.

Average exposure rates 1 m above the ground, as calculated from aerial data, are presented in the form of an isopleth map. No ground sample data were taken at the time of the aerial survey.

CONTENTS

Abstract 3


S	_	_	••	_	_	_
•	^	~	Ŧ1	^	п	•
	_	L .				-

1.0	Introduction 7
2.0	Survey Area History and Location 7
3.0	Survey Method and Airborne Equipment
4.0	Data Processing Methods 7
5.0	Discussion and Results 11
	5.1 Mallinckrodt Nuclear Facility 13
	5.2 Latty Avenue and Airport 15
	5.3 West Lake Landfill 17

Figures

1	Flight Lines: Malfinckrodt Nuclear 6
2	Flight Lines: Latty Avenue 8
3	Flight Lines: West Lake Landfill 9
4	Hughes H-500 Helicopter Containing the REDAR System 10
5	Mobile Computer Processing Laboratory 11
6	Gross Count Rate Isopleths - Aerial Data — Mallinckrodt Nuclear Site 12
7	Background-Subtracted Energy Spectrum: Mallinckrodt Nuclear Site 13
8	Exposure Rate Isopleths: Latty Avenue 14
9	Background-Subtracted Energy Spectrum: Latty Avenue 15
10	Exposure Rate Isopleths: West Lake Landfill 16
11	Background-Subtracted Energy Spectrum: West Lake Landfill 17
	•

References 19

1.0 INTRODUCTION

The United States Department of Energy (DOE) maintains an aerial surveillance operation called the Aerial Measuring System (AMS).* AMS is operated for DOE by EG&G. This continuing nationwide program, started in 1958, involves surveys to monitor radiation levels in and around facilities producing, utilizing, or storing radioactive materials. The purpose of the survey is to document, at a given point in time, the location of all areas containing gamma emitting radioactivity (visible at the surface), and to aid local personnel in evaluating the magnitude and spatial extent of any radioactive contaminants released into the environment. At the request of DOE, or other federal and/or state agencies (such as the United States Nuclear Regulatory Commission), AMS is deployed for various aerial survey operations.

AMS was utilized during the period 22-28 October 1977 to radiometrically survey an area 1.6 km² centered on the Mallinckrodt Nuclear Maryland Heights Facility. Also surveyed was an area 3.2 km² surrounding 9200 West Latty Avenue, which included a portion of the St. Louis International Airport. A third site surveyed was a 2.6 km² area centered on property operated by West Lake Landfill, Inc., 8 km northwest of the airport.

The St. Louis International Airport was the survey base of operation.

2.0 SURVEY AREA HISTORY AND LOCATION

The Mallinckrodt Nuclear Maryland Heights Facility is located at 2703 Wagoner Place, St. Louis, Missouri. This plant receives radioisotopes from various vendors and converts them to radio pharmaceutical materials. Radioisotopes which they handle include ¹³¹I, ^{99th}Tc, ⁹⁹Mo, ⁷⁵Se, and ⁵⁹Fe. Mallinckrodt Nuclear is a Division of Mallinckrodt, Inc. (formerly, Mallinckrodt Chemical Works). Mallinckrodt, Inc. acquired the Maryland Heights facility from Nuclear Consultants, Inc. in 1965.

It is reported in an ORNL report² and a NRC report³ that during the period 1942 through the late 1950's Mallinckrodt Chemical Works of St. Louis processed uranium ore. Some of the ore

residues and processed wastes were stored on the airport property.

In early 1966 these ore residues and uraniumbearing processed wastes were moved from the airport property by the Continental Mining and Milling Company of Chicago, Illinois to the Latty Avenue site.

In January, 1967 the Commercial Discount Corporation of Chicago, Illinois purchased the residues; much of the material was then dried and shipped to the Cotter Corporation facilities in Canon City, Colorado. The source material remaining at the Latty Avenue site was sold to the Cotter Corporation in December, 1969. Records indicate that residues remaining on the site at that time included 74,000 tons of Belgian Congo pitchblende raffinate containing about 113 tons of uranium; 32,500 tons of Colorado raffinate containing about 48 tons of uranium; and 8,700 tons of leached barium sulfate containing about 7 tons of uranium. During the period August through November, 1970 Cotter Corporation dried some of the remaining residues and shipped them to their mill in Canon City, Colorado. By December, 1970 an estimated 10,000 tons of Colorado raffinate and 8,700 tons of leached barium sulfate remained at the Latty Avenue site.

In April, 1974 a NRC inspector was informed that the remaining Colorado raffinate had been shipped in mid-1973 to Canon City without drying and that the leached barium sutfate had been transported to a landfill area in St. Louis County. A reported 12 to 18 inches of topsoil had been stripped from the Latty Avenue site: this supposedly had been removed with the leached barium sulfate. However, analyses of soil samples taken during a NRC investigation of the Latty Avenue site in 1976 indicated the presence of uranium—and thorium—bearing residues.

The West Lake Landfill property is located off St. Charles Rock Road near Taussig Road, approximately 8 km northwest of the airport.

3.0 SURVEY METHOD AND AIRBORNE EQUIPMENT

An enlarged aerial photo of each site was used to lay out the survey flight lines (Figures 1, 2, and 3). The navigator visually directed the aircraft

^{*}Formerly Aerial Measuring System (ARMS).

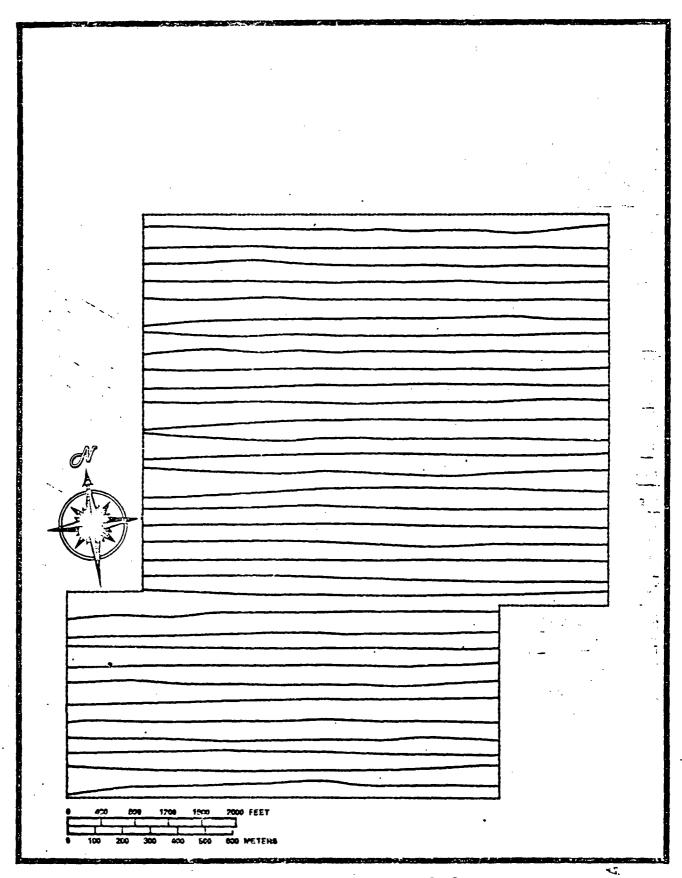


Figure 2. FLIGHT LINES LATTY AVENUE

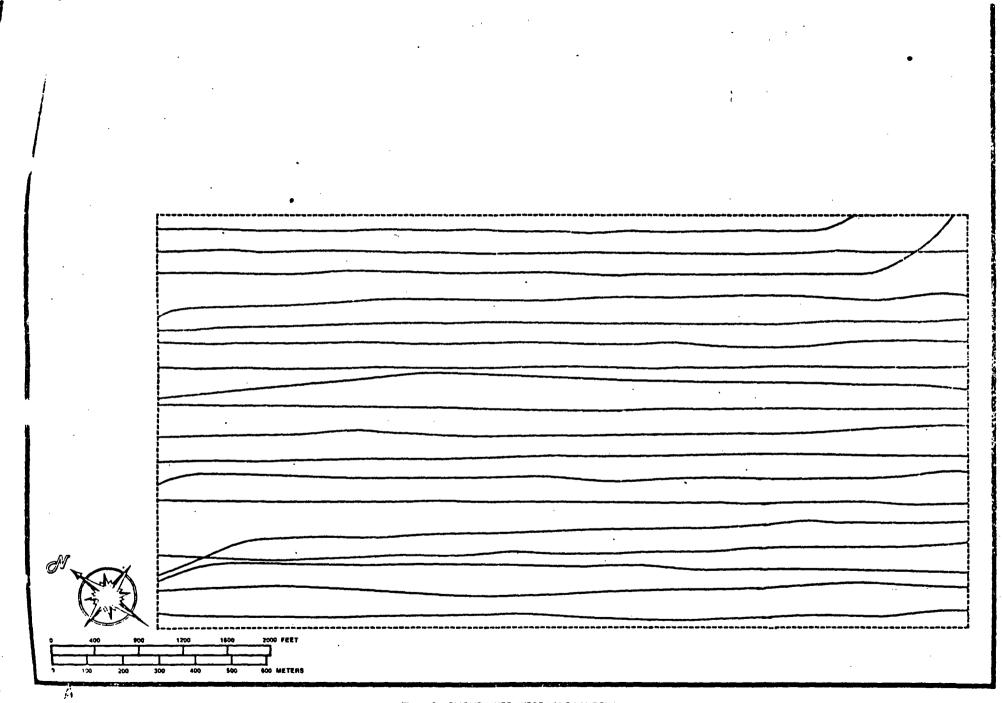


Figure 3. FLIGHT LINES: WEST LAKE LANDFILL

along the programmed flight lines on the photograph. The survey pattern consisted of parallel lines at 60 m intervals. Flight altitude was 60 m.

A Hughes H-500 helicopter was utilized for the survey (Figure 4). The H-500 carried a crew of two: pilot and navigator. The helicopter employed a lightweight version of the Radiation and Environmental Data Acquisition and Recorder system (REDAR). Two pods were mounted on the sides of the helicopter: each pod contained ten 12.7 cm diameter by 5.1 cm height Nal(TI) detectors. Gamma ray signals from the 20 detectors were summed and routed through an analog-to-digital converter and a pulse-height analyzer. Gamma spectra were accumulated in 3-second intervals and recorded on 1/2 inch magnetic tape.

The helicopter position was established with two systems: a Trisponder/202A Microwave Ranging System (MRS), and an AL-101 radio altimeter. The trisponder master station

mounted in the helicopter interrogated two remote transceivers mounted on towers outside the survey area. By measuring the round trip propagation time between the master and remote stations, the master computed the distance to each. These distances were recorded on magnetic tape each second; in subsequent computer processing these were converted to position coordinates.

The radio altimeter similarly measured the time lag for the return of a pulsed signal and converted this to aircraft altitude. For altitudes up to 150 m, the accuracy was \pm 0.6 m or \pm 2%, whichever is greater. These data were also recorded on magnetic tape so that any variations in gamma signal strength caused by altitude fluctuation could be accurately compensated.

The detectors and electronic systems which accumulate and record the data are described only briefly here. They are described in considerable detail in a previous report.

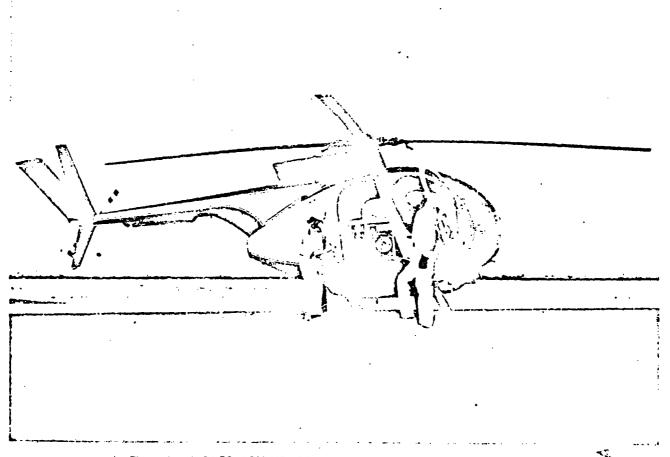


Figure 4. HUGHES H-500 HELICOPTER CONTAINING THE REDAR SYSTEM

4.0 DATA PROCESSING

Data processing was done with the Radiation and Environmental Data Analyzer and Computer system (REDAC). This is a computer analysis laboratory mounted in a mobile van (Figure 5).

REDAC consists primarily of two Cipher Data tape drives, a Data General NOVA 840 computer, two Calcomp plotters, and a Tektronics CRT display screen. The computer has a 32 k-word core memory and an additional 1.2 x 10⁶-word disc memory. An extensive collection of software routines is available for data processing.

The gross count data were corrected for system dead time and altitude deviation. Corrections to the gross count rates were also made for contributions from radon, aircraft background,

and cosmic rays. Flights over the Missouri River were used for this purpose.

The corrected gross count rates were converted to exposure rates at 1 m altitude, with the factor 1024 counts per second (cps) per μ R/h obtained from calibration data over a Nevada test range.

5.0 DISCUSSION AND RESULTS

Analysis of the radiological data taken over the area surrounding each of the sites discussed in this report indicates that the terrestrial radioisotopes and associated gamma ray exposure rates were consistent with the natural background normally found within areas having a similar geological basis. These background exposure rates were in the 8-11 μ R/h range, including 3.7 μ R/h due to cosmic rays.

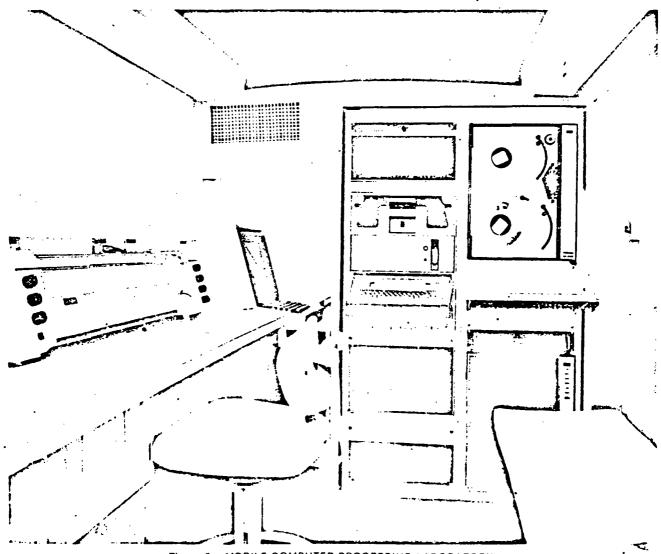
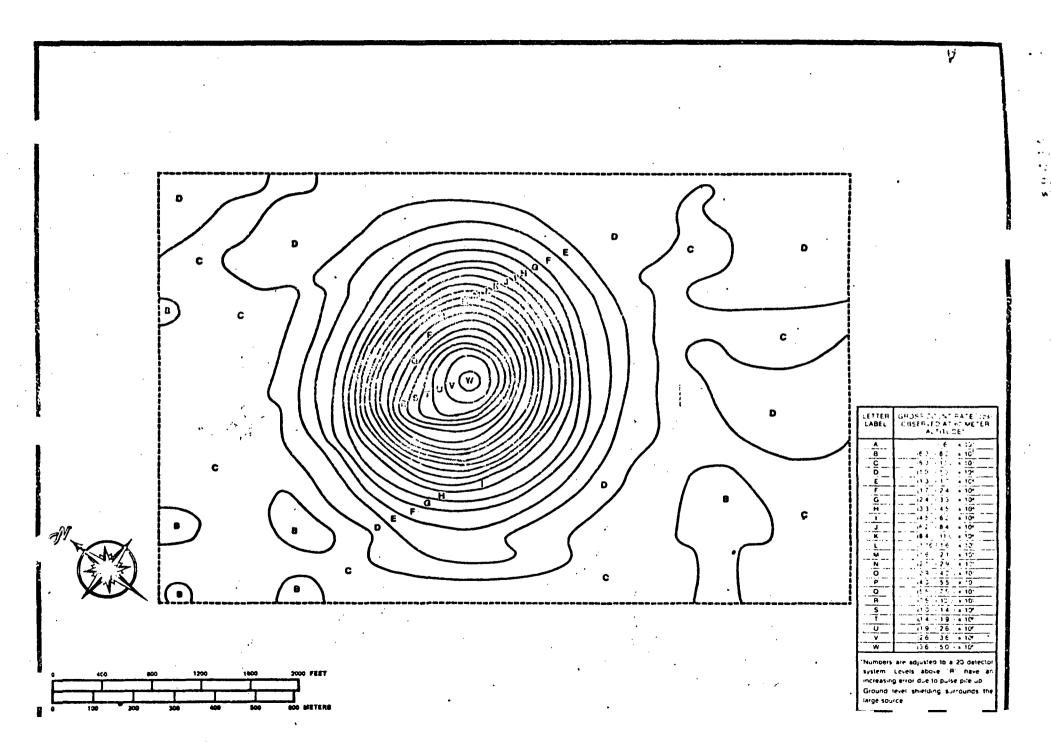



Figure 5. MOBILE COMPUTER PROCESSING LABORATORY

5.1 Mallinckrodt Nuclear.

Figure 6 presents gross count rate isopleths superimposed on an aerial photograph of the Mallinckrodt Nuclear Maryland Heights Facility. The isopleths shown in this figure are consistent with the existence of point sources in a storage room which has heavily shielded walls at the ground level but a lightly shielded roof. Due to this difference in shielding the aerially determined isopleths are not representative of what would be measured on the ground. For this

reason, and because conversion factors apply only to uniform horizontal distributions at the ground level, the letter labels in Figure 6 have not been converted to exposure rates at the 1 m level.

Figure 7 is a background-subtracted energy spectrum of the radiation from the area of increased activity. Photopeaks observed are 364 keV and 637 keV from ¹³¹I, 740 keV and 780 keV from ⁹⁹Mo, and 1.095 MeV and 1.292 MeV from ⁵⁹Fe. All three of these isotopes are received by the Facility for processing.

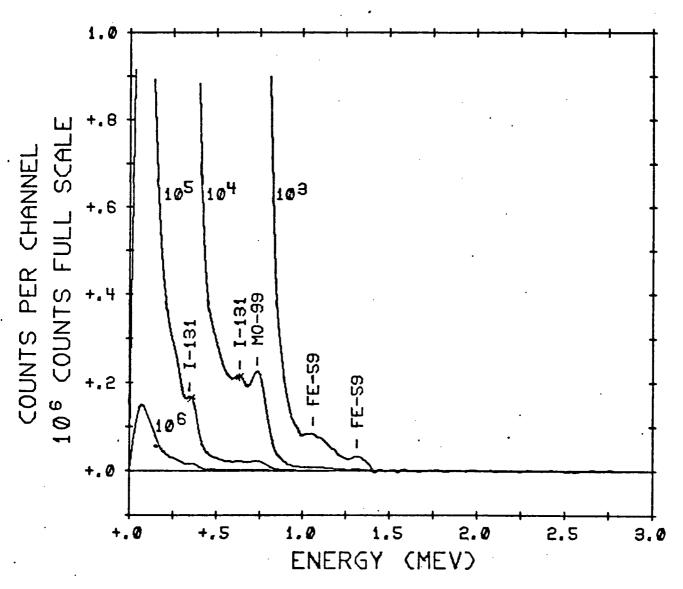


Figure 7. BACKGROUND-SUBTRACTED ENERGY SPECTRUM: MALLINCKRODT NUCLEAR SITE This spectrum characterizes the enhanced activity observed in Figure 6.

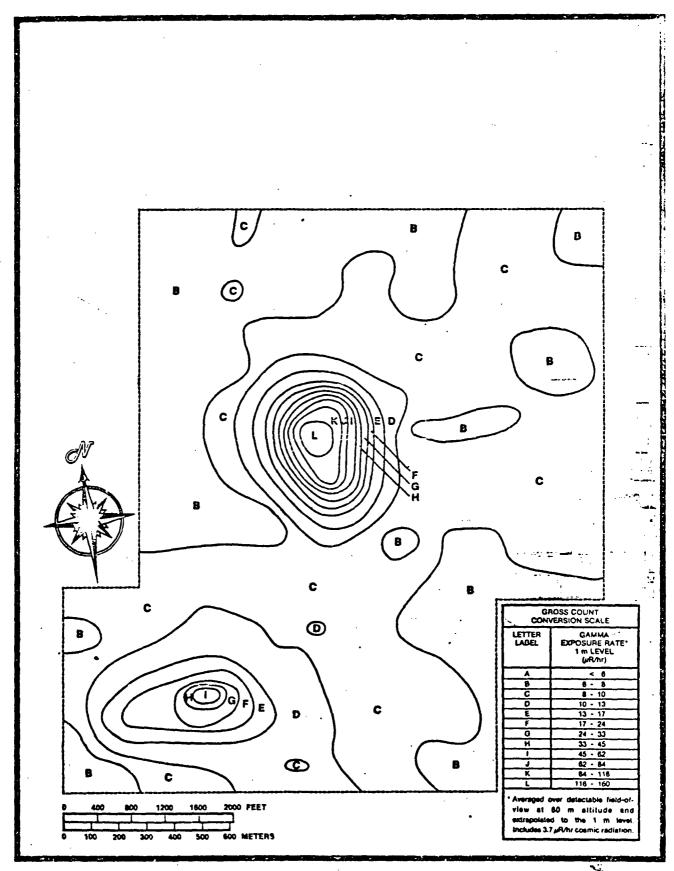


Figure 8. EXPOSURE RATE ISOPLETHS: LATTY AVENUE

5.2 Latty Avenue and Airport

Figure 8 presents the exposure rate isopleths superimposed on an aerial photograph of the site. Figure 9 is a background-subtracted energy spectrum of the radiation characteristics of both areas of increased activity. Radiation from ²¹⁴Bi accounts for all the major photopeaks observed.

This isopleth map (Figure 8) is based on gross counts (integral counts in the energy region

between .05 MeV and 3 MeV). The factor used to convert these counts to the exposure rate at the 1 m level was determined from measurements at a calibration site containing a typical mix of naturally occurring radionuclides. Since the spectrum shown in Figure 9 is different from a typical natural spectrum, the conversion factor may be in error. The isopleths, which represent ground level exposure rates for distributed sources, are consistent with sources whose lateral dimensions are a few hundred feet.

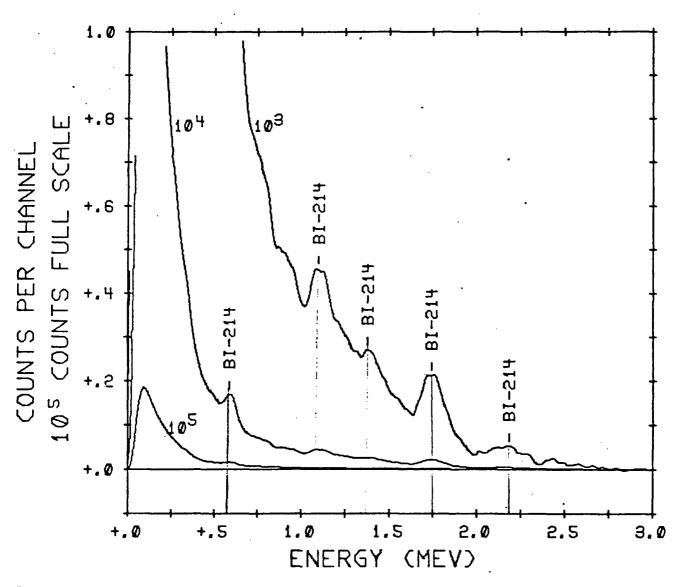


Figure 9. BACKGROUND-SUBTRACTED ENERGY SPECTRUM: LATTY AVENUE

This spectrum of gamma radiation was characteristic of the areas of increased activity at Latty Avenue and the airport as shown in Figure 8.

B	7 A 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C C C C C C C C C C C C C C C C C C C	

5.3 West Lake Landfill

Figure 10 presents the exposure rate isopleths superimposed on an aerial photograph of the site. Figure 11 is a background-subtracted

energy spectrum of the radiation characteristic c both areas of increased activity. Radiation from 214Bi accounts for all the major photopeak observed.

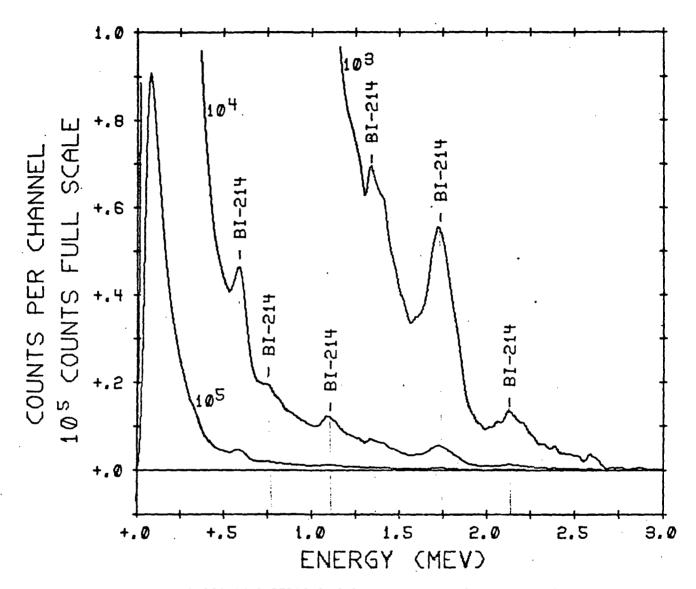


Figure 11. BACKGROUND-SUBTRACTED ENERGY SPECTRUM: WEST LAKE LANDFILL
Photopeaks shown here characterize both areas of enhanced activity in Figure 10.

REFERENCES

- 1. Boyns, P. K. July 1976. The Aerial Radiological Measuring System (ARMS): Systems, Procedures, and Sensitivity (1976). Report No. EGG-1183-1691. Las Vegas, NV: EG&G.
- 2. Oak Ridge National Laboratory. September 1977. Radiological Survey of the Property at 9200 Latty Avenue, Hazelwood, Missouri. Interim Report. Oak Ridge, TN.
- 3. Nuclear Regulatory Comission, Office of Inspection and Enforcement. 20 October 1976.

 Investigation Report No. 76-01. Glen Ellyn, IL.

DISTRIBUTION

NRC

B. H. Weiss (15)

DOE/OES

L. J. Deal (5)

DOE/MA

R. E. Lounsbury (1)

DOE/TIC

T. B. Abernathy (2)

DOE/NV

H. F. Hahn, EMO (1)

D. G. Jackson (3)

J. A. Koch (1)

R. R. Loux (1)

J. K. Magruder (1)

R. B. Purcell (2)

H&N

W. E. Anderson (1)

LBL

H. A. Wollenberg (1)

EG&G

H. M. Borella, SBO (2)

J. F. Doyle, LVAO (1)

W. A. Frankhauser, WAMD (3)

L. A. Franks, SBO (1)

L. K. Hilton, LVAO (1)

H. A. Lamonds, SBO (1)

R. L. Lynn, SBO (1)

T. C. Maguire, WAMD (1)

R. A. Mohr, SBO (1)

L. G. Sasso, LVAO (1)

G. R. Shipman, WAMD (1)

G. P. Stobie, LVAO (1)

E. J. Story, LVAO (1)

T. P. Stuart, LVAO (1)

W. J. Tipton, LVAO (1)

G.G. Widner, LVAO (1)

LIBRARIES

AMO (50)

Las Vegas (1)

Santa Barbara (2)

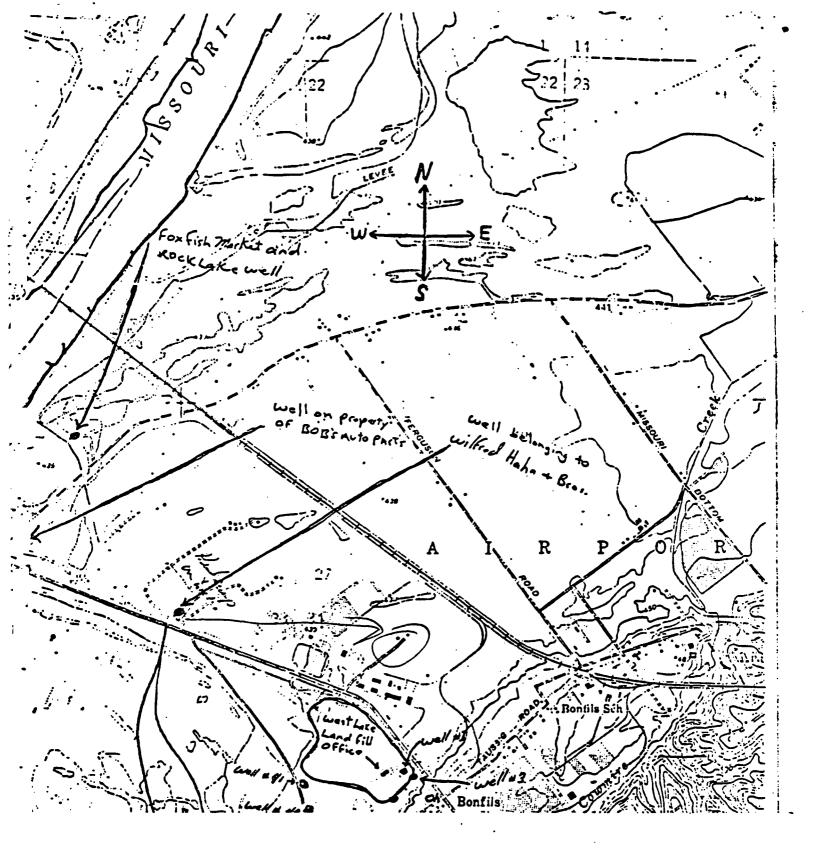
MALLINCKRODT NUCLEAR MARYLAND HEIGHTS
FACILITY
AND TWO ADDITIONAL SITES
ST. LOUIS, MISSOURI
EGG-1183-1721

DATE OF SURVEY: OCTOBER 1977
DATE OF REPORT: SEPTEMBER 1979

O COA .	POTENTIAL HAZARDOUS	S WASTE S	ITE		R	EGION	SITE N	UMBER	
SOCIA	TENTATIVE DISPOSITION					VII	MOD	0799009	32
File this form in the regional Haza System: Hazardous Waste Enforce							oa Age	ncy; Site	Tracking
Jystem, Mazardous waste Emoiter	I. SITE 101			ington, De	20400	•	.,		
A. SITE NAME			TREET	· · · · · · · · · · · · · · · · · · ·					
Westlake Landfill	·			Charles	s Rocl		•		
C. CITY		1	TATE			Ε. Ζ	1P CO		l
Bridgeton		Mo.	SITION				630	44	
Indicate the recommended action(s	II. TENTAT			rking 'X' i	n the so	orooris	te box	es.	
								GENCY	
· REC	COMMENDATION	·		MARK'X'	EPA	\$7.	TE	LOCAL	PRIVATE
A. NO ACTION NEEDED NO HAZA	RO								
B. INVESTIGATIVE ACTION(S) NEE	DED (II yee, complete Section II	п.)			Х				
C. REMEDIAL ACTION NEEDED (II	· · · · · · · · · · · · · · · · · · ·								
ENFORCEMENT ACTION NEEDED. be primerily managed by the EPA of anticipated.)									
Dioxin has not been di	scovered at this si	te in a	ny of	the sam	pling	effo	rts,	nor do	es there
appear to be a problem	with any of the 's	tandard	' haza	rdous wa	astes	. Th	ere	is stro	ng
evidence of radioactiv	e components above	accepta	ble li	mits in	the	landf	ill.	No of	j-site
migration of these com	ponents is apparent	. Stra	tegy f	or this	site	is u	ncer	tain.	ن
F. INDICATE THE ESTIMATED DAT (mos, day, & yrs)	E OF FINAL DISPOSITION		F A CASE ESTIMATE GO., day, &	D DATE ON	MENT P	THE P	NECES	SARY, IND	EATE THE
H. PREPARER INFORMATION			 -						
I. NAME		2.	TELEPHO	NE NUMBE	A			T E (mo., da	y. 4 yes)
Steven Kinser		91	3-236-	2856			11-	06-85	
A. IDENTIFY ADDITIONAL INFORM.	III. INVESTIGAT								
STOCKTON ADDITIONAL TAPORE.	ATION NEEDED TO ACHIEVE	A FINAL D	ISPOSITIO	, n.					
See Above.									
									•
8 BOODSED WASSELS THE AC	THE THE ROLL OF THE PARTY OF TH								
8. PROPOSED INVESTIGATIVE AC	Tivit (Deterior Information)								
1.METHOD FOR OBTAINING NEEDED ADDITIONAL INFO.	2.SCHEDULED 3. TO BE DATE OF PERFORMET (EPA, Confero, A pr) (mo, day, A pr)	D BY ES	4, STIMATED ANHOURS	,		5. R	EMARK	· (S	
a. TYPE OF SITE INSPECTION									
				<u> </u>		_			
(2)									
(3)								FUND	
b. TYPE OF MONITORING						140	V	7 198.	
• 00				_			ITE	7 198 LOG	,
C. TYPE OF SAMPLING	/						-		
-" 85 NC	V RECTO			<u> </u>					
1	T ILLUS	ŀ							

MISSOURI DEPARTMENT OF NATURAL RESOURCE DIVISION OF ENVIRONMENTAL QUALITY LABORATORY SERVICES PROGRAM

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT


NAME OF FACILITY	West Lake La	andfill	·	
SAMPLES COLLECTED BY	Mike Lincoln	DATE(S)	10-1-80	
NOTE:				
SAMPLE DESCRIPTION	Well #41	Well #40	Bahn Farmhouse Well	
DATE COLLECTED - SAMPLE NUMBER	10-1-80 80-7418	10-1-80 80-7419	10-1-80 80-7420	
pH Units Specific Cond. (umhos/cm @ 25° C)	6.3 4000	6.7 1450	6.7 1000	
lligrams per liter				
BOD COD NH ₃ as N NO ₃ +NO ₂ as N Total P	∠12 19.6 0.31 3.00 0.07	25.8 0.09 20.05 0.03	90.9 0.15 0.47 - 0.03	
Total Sulfide TOC Total Cyanide Non-Filterable Residue (SS) Filterable Residue (TDS)	∠ 0.1 63.1 ∠ 0.01 126 2744	∠ 0.1 37.6 ∠ 0.01 162 839	∠ 0.1 67.3 ∠ 0.01 300 4 96	
Alkalinity as CaCO ₃ Fluoride Chloride Chloride Sulface Hardness as CaCO ₃ (Ca, Mg, Fe, Zn, Mn)	690 0.17 250 1100 1450	500 0.19 7.07 177 591	360 0.61 1.0 	
Potassium, Dissolved Sodium, Dissolved Salcium, Dissolved Magnesium, Dissolved	12.3 268 429 93	7.6 33.8 166 43	6.9 6.1 122 23	•
icrograms per liter				
ladmium, Dissolved 10 hromium, Dissolved Copper, Dissolved ron, Dissolved, mg/1 13 ead, Dissolved 50	7.2 4.5 5 2.08	0.6 < 5 5 2.82	0.1 <-5 <-1 3.13 2	
Manganese, Dissolved 50 X ercury, Dissolved ickel, Dissolved Zinc, Dissolved, mg/l rsenic, Dissolved ilver, Dissolved	670 QNS* 110 9.72 < 5	1310 QNS* & 20 3.50 & 5	770 ONS* <- 20 0.05 <- 5	
*Quantity not sufficient	0.4	0.2 Exhi	bit 14-H 0.4	

MISSOURI DEPARTMENT OF NATURAL RESOURCES DIVISION OF ENVIRONMENTAL QUALITY LABORATORY SERVICES PROGRAM

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

	NAME OF FACILITY		West Lake Landfill			<i>i</i> .
	SAMPLES COLLECTED	BY	Mike Lincoln	DATE(S)	10-1-80	
	NOTE:					
-	DESCRIPTION	,	Fox Fish Market Well	Sha	llow Well 6	Bob's A

SAMPLE DESCRIPTION	Fox Fish Market We	ell Shallow Well @ Bob's Auto Parts
DATE COLLECTED -	10-1-80	10-1-80 .
SAMPLE NUMBER	80-7421	80-7422
H Units Specific Cond. (umhos/cm @ 25° C)	6.6 950	6.6 1900
l ligrams per liter		
BOD	∠ 12	∠ 12
OD	4.3	12.1
H, as N	0.37	. · 0.23
NO3+NO2 as N	∠ 0.05	< 0.05
otal P	0.21	. 0.43
_otal Sulfide	≥ 0.1	<0.1
TOC	18.0	35.7
otal Cyanide	< 0.01	2. 0.01
on-Filterable Residue (SS)	11	· 38
Filterable Residue (TDS)	492	918
lkalinity as CaCO3	396	. 580
luoride	0.42	0.22
Chloride	7.0	112
ulfate	63	84
ardness as CaCO3 (Ca, Mg, Fe, Zn, Mn)	· 394	<i>623</i>
tassium , Dissolved	3.8	20.3
dium, Dissolved	18.4	54. 5
lcium, Dissolved	110	187
Magnesium, Dissolved '	29	38
		•
icrograms per liter		
ıdmium, Dissolved	0.2	0.7
romium ; Dissolved	~ 5	∠5
Copper, Dissolved	4	. 3
on, Dissolved, mg/l	4.18	18.6
ad , Dissolved	2	, 7
Manganese, Dissolved	2 90	790
rcury, Dissolved	QNS*	QNS*
ckel, Dissolved	2 0	< 20 .
Zinc , Dissolved, mg/l	0.02	1.39
senic , Dissolved	∠ 5	∠ 5
lver, Dissolved	0.2	0.3
*Quantity not sufficient		•

The

Gack 11/20/80

Report of Radionuclide Analysis of Water Sample Public Water Supply U.S. Environmental Protection Agency

(To be filled out by pub Westlake Quaery PWS ID NO. 80-7/2 PWS Name Dept. NA Address 20 80 x	TURAL RESOURCE	Date Received Date // Samuel (1)	Mo.) (Day) (Year)
City Jefferson		State	Zip Code_65102
	oratory) pt. of Community Heal viron. Health Laborat		
Address and City 80	1 S. Brentwood Blvd	Clayton, Mo. 63105	
Lab ID No. 00	260	Analyst	Staff
Contaminant Name	Analysis Result	Analysis Date	Analysis Method
Gross Alpha Particle Activity (5pc./1 Radium - 226 Radium - 228	8.2-3.1, C/L	1214 180 80. Day Yr 121 4 150	Std Heth. EPA-100/4-75=0082
Gross Beta Particle Activity (50pc./1			
Tritium Strontium - 90 Iodine - 131 Cesium - 134			

This form must accompany the radionuclide cubitainer to the laboratory. The public water supply will be notified by the Water Supply Field Office, U.S. EPA of the results of the radionuclide examinations.

Road 11/20/80

Report of Radionuclide Analysis of Water Sample Public Water Supply U.S. Environmental Protection Agency

PWS 19 NO SO- PWS Name Dept. A Address P. O. B	public water supply) 7/3 8 ATURAL RESOURCES 0 X 1368 SON CITY	Date/a	2 11/20/80 5 1 30 1 80 5:10. 50.) (Day) (Year) Zip Code_65/02
Lab Running Sample	laboratory) Dept. of Community Her Environ. Health Labora	atories	· · · · · · · · · · · · · · · · · · ·
Address and City Lab ID No.	801 S. Brentwood Blvd Clayton, Mo. 63105	Analyst	
Contaminant Name	Analysis Result	Analysis Date	Analysis Method
Gross Alpha Particle Activity (5pc./1 Radium - 226 Radium - 228	25 gCi/2 0.5 gC/2	/2 4 180 80. Day 87 /4 4 60	Std Help <u>=14-100/4-15</u> -6082
Gross Beta Particle Activity (50pc./l Tritium	•		
Strontium - 90 Iodine - 131 Cesium - 134			

This form must accompany the radionuclide cubitainer to the laboratory. The public water supply will be notified by the Water Supply Field Office, U.S. EPA of the results of the radionuclide examinations.

SOLID WASTE MANAGEMENT PROGRAM

LSP-69/5-5-80

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

NAME OF FACILITY We	st Lakes Landfill	<u> </u>
SAMPLES COLLECTED BY	Randy Crawford	DATE(S) 10-29-80
NOTE:	7.	
SAMPLE DESCRIPTION	Boring #1	Slough on N.W. edge (grab)
DATE COLLECTED - SAMPLE NUMBER	10-29-80 80-7125	10-29-80 80-7126
-11 11-14-	6.6	7.5
<pre>pH Units Specific Cond. (umhos/cm</pre>	500	7 . 5
@ 25° C)		743
Milligrams per liter		
- •	16	4
BOD COD	64.4	13.8
NH ₂ as N	0.84	0.04
1	0.54	0.08
NO3+NO2 as N Total P	0.21	0.07
	0.34	∠ 0.04
MBAS Total Sulfide		_
TOC	25.8	∠1
Total Cyanide	1	•
Non-Filterable Residue (SS)	No Result*	9
Filterable Residue (TDS)	No Result*	366
Color Alkalinity as Cacoa	< 25	∠ 25
Alkalinity as CaCO ₃ Fluoride	0.42	0.36
Chloride	6.5	57. <i>8</i>
Sulfate	79	56
	370	244
Hardness as CaCO ₃ (Ca, Mg, Fe, Zn, Mn)	370	
Potassium	Ì	
Sodium		
Calcium	i	
Magnesium		
Temperature		9 °C
Micrograms per liter		_
Barium, Dissolved Cadmium, Dissolved	600	200 Total 0.1 Total
	0.3	21 Total
Chromium, Dissolved	2	∠l Total
Copper, Dissolved	3 150	24 0 Total
Iron, Dissolved		2 Total
Lead, <i>Dissolved</i> Selenium, <i>Dissolved</i>	2 2	∠5 Total
Manganese, Dissolved	1000	70 Total
Mercury, Dissolved	< 0.1	∠ 0.1 Total
Nickel	•	·
Zinc, Dissolved	700	14 Total
-Arsenic, Dissolved	· 1	∠5 Total
Silver, Dissolved	₹ 0.2	∠ 0.1 Total
*No unfiltered sample		
700 50/5 5 00		

MISSOURI DEPARTMENT OF NATURAL RESOURCLD DIVISION OF ENVIRONMENTAL QUALITY LABORATORY SERVICES PROGRAM

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

NAME OF FACILITY We	st Lakes Landfill	
SAMPLES COLLECTED BY	Randy Crawford	DATE(S) <u>10-30-80</u>
NOTE:	•	·
SAMPLE DESCRIPTION	Boring #2	Black Diamond Lake (grab)
DATE COLLECTED - SAMPLE NUMBER	10-30-80 80-7127	10-30-80 80-7128
pH Units Specific Cond. (umhos/cm @ 25° C)	7.2 1100	7.5 4000
Milligrams per liter		
BOD	6	>444
COD	37.8	845
NH ₂ as N	0.22	108
$NO_3^2+NO_2$ as N	0.98	∠ 0.05
'Total P	0.37	1.0
MBAS Total Sulfide	0.06	0.07
TOC	33.0	3 02
Total Cyanide		
Non-Filterable Residue (SS)	15452	24
Filterable Residue (TDS)	684	2064
Color Alkalinity as CaCO3	∠ 25	1000
Fluoride	0.25	0.54
Chloride	42.1	35 5
Sulfate	159	2 9
Hardness as CaCO ₃ (Ca, Mg, Fe, Zn, Mn)	465	718
Potassium		
Sodium		
Calcium		
Magnesium		_
. Tempe rature	12°C	14°C
Micrograms per liter	700 Pinalas	300 Total
Barium Cadmium	700 Dissolved 1.0 Dissolved	0.2 Total
Chromium	2 Dissolved	12 Total
Copper	11 Dissolved	1 Total
Iron	400 Dissolved	3200 Total
Lead	3 Dissolved	∠! Total
Selenium Manganese	5 Dissolved 600 Dissolved	∠l Total ∠5 Total 500 Total
Mercury	∠0.1 Dissolved	∠0.1 Total
Nickel		
Zinc	1310 Dissolved	238 Total
-Arsenic	2 Dissolved	5 Total
Silver	∠0.2 Dissolved	∠ 0.1 Total

MISSOURI DEPARTMENT OF NATURAL RESOURC. DIVISION OF ENVIRONMENTAL QUALITY LABORATORY SERVICES PROGRAM

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

NAME OF FACILITY <u>West Lake Landfill</u>

SAMPLES COLLECTED BY <u>Randy Crawford</u> DATE(S) <u>10-30-80</u>

NOTE:

SAMPLE DESCRIPTION	Boring #3	Boring #4	Boring #5	(Along St. Charles Rock Road)
DATE COLLECTED - SAMPLE NUMBER	10-30-80 80-7129	10-30-80 80-7130	10-31-80 80-7131	ROCK ROAD) .
OALI DE MONDEM				
pH Units	7.0	6.7	6.7	
	1100	0.7		
Specific Cond. (umhos/cm	1100	-	1200	
@ 25° C)				
Milligrams per liter				
BOD	7	17	9	
COD	35.1	42.2	16.9	
	0.11		0.02	
NH ₃ as N		0.23		
NO_3+NO_2 as N	0.22	0.06	0.36	
·Total P MBAS	0.16	0.06 0.06	0.10 0.15	
Total Sulfide	0.07	0.00	0.13	
TOC	No Result*	No Result*	No Result*	
Total Cyanide Non-Filterable Residue (SS)	8496	7310	8 96	
• •	1	2040	120	
Filterable Residue (TDS) Color	392 ∠25	2040 4 25	<u> 25</u>	
Alkalinity as CaCO3	223	~ 23	2 23	
Fluoride	0.32	0.20	0.17	
Chloride	16.4	10.2	14.3	
Sulfate	78	37	141	
	i	747	<i>577</i>	
Hardness as CaCO3 (Ca, Mg, Fe,	585	/4/	3//	
Zn, Mn)				
Potassium	ł		•	
Sodium	l			
Calcium				
Magnesium				
<i>Temperature</i>	15 ⁰ C	15 ⁰ C	18 ⁰ C	
	}		•	
dicrograms per liter				
Barium, Dissolved	500	400	200	
Cadmium, Dissolved	0.8	1.3	0.9	
Chromium, Dissolved	5.6	6	4	
Copper, Dissolved	11	7	4	
Iron, Dissolved	1200	1000	400	
	4		_	
Lead, Dissolved Selenium, Dissolved	3	4 5	45	
Manganese, Dissolved	1100	4400	30 0	
Mercury, Dissolved	∠0.1	∠0.1	£0.1	
Nickel]			
Zinc, Dissolved	550	198	132	
- Arsenic, Dissolved	,	2	∠ 5	
Silver, Dissolved	20.2	∠ 0.2	40.2	
*Instrument Failure		20.0	- 0.2	
LSP-69/5-5-80	•			

Method 624 Volatile Organics

	CAS No.	COMPOUND NAME	RESULTS
	CO NO.	COLLOCKD NATE	<u>úg/1</u>
ANPLE DESCRIPTION:	107-02-8	Acrolein	NA
	107-13-1	Acrylonitrile	- NA
Westlake Landfill leachate discharge	71-43-2	Benzene	26
to Fish Pot Creek	74-83-9	Bromomethane	<27
	75-27-4	Bromodichloromethane	<3.2
	75-25-2	Bromoform	<u><2.8</u>
ate Collected: 12-14-83	56-23-5	Carbon Tetrachloride	<3.1
Collected By: Virgil Wiesner	108-90-7	Chlorobenzene	<2.4
· · · · · · · · · · · · · · · · · · ·	75-00-3	Chloroethane	<u> </u>
ffiliation: SLRO	110-75-8	2-Chloroethylvinyl ether	<8.3_
Method:	67-66-3	Chloroform	<2.9
	74-87-3	Chloromethane	<24
3PA Method No. 624	124-48-1	Dibromochloromethane	<2.8
	75-34-3 107-06-02	1,1-Dichloroethane 1,2-Dichloroethane	11
i	107-00-02	1,2-Diditorbe triale	<2.0
	75-35-4	1, 1-Dichloroethene	<2.9
_	540-59-9	trans-1,2-Dichloroethene	5.3
emarks:	78–87–5	1,2-Dichloropropane	<1.5
malyzed 1/5/84. Sample exceeded holding		cis-1,3-Dichloropropene	NA
time by 8 days.	10061-02-6	trans-1,3-Dichloropropene	<2.5
_	100-41-4	Ethylbenzene	<2.6
	75-09-2	Methylene chloride	15
	79-34-5	1,1,2,2-Tetrachloroethane	<2.3
L - The recovery of a spike in the	127-18-4	Tetrachloroethene	<2.4
sample was not within the control limits.	71-55-6	1,1,1-Trichloroethane	<3.2_
	79-00-5	1,1,2-Trichloroethane	<3.3_
A - Not Analyzed	79-01-6	Trichloroethene	<3.0
NR - No Result - see Remarks	75-69-4	Trichlorofluoromethane	NA
D - A standard was not rum and a	108-88-3	Toluene	130
measurable (near MDL) peak was not	75-01-4	Vinyl chloride	<24
found at the expected retention time.	i		
I - Tentative Identification has been			
made through a library search. An		•	
authentic standard has not been run.			•
The est. conc. is based on response	·	•	
relative to an internal standard.			
417			
pproved: May Kl. John			

istribution:

ave Bedan, Waste Management Program
Bill Price, Public Drinking Water Program

James H. Long, Director Laboratory Services Program

Page

Method 624 Volatile Organics

			RESULT
	CAS No.	COMPOUND NAME	<u>úg/1</u>
AMPLE DESCRIPTION:	107-02-8	Acrolein	W A
	107-02-8	Acrylonitrile	NA
Fish Pot Creek below Sulphur Spring	71-43-2	Benzene	<1.8
Road Bridge 1000 feet	74-83-9	Bromomethane	<27
•	75-27-4	Bromodichloromethane	<3.2
	75-25-2	Bromoform	<2.8
ate Collected: 12-14-83	56-23-5	Carbon Tetrachloride	<3.1
	108-90-7	Chlorobenzene	<2.4
Collected By: Virgil Wiesner	75-00-3	Chloroethane	<27
ffiliation: SLRO	110-75-8	2-Chloroethylvinyl ether	<8.3
Method:	67-66-3	Chloroform	<2.9
	74-87-3	Chloromethane	<24
	124-48-1	Dibromochloromethane	<2.8
EPA Method No. 624	75-34-3	1, 1-Dichloroethane	<2.0.
	107-06-02	1,2-Dichloroethane	<2.0
·	75-35-4	1, 1-Dichloroethene	<2.9
_	540-59-9	trans-1,2-Dichloroethene	<3.2
enarks:	78-87-5	1,2-Dichloropropane	<1.5
Analyzed 1/5/84. No detectable	10061-01-5	cis-1,3-Dichloropropene	NA
contamination was found. Sample	10061-02-6	trans-1,3-Dichloropropene	<2.5
exceeded holding time by 8 days.	100-41-4	Ethylbenzene	<2.6
•	75-09-2	Methylene chloride	< 5.4
	79-34-5	1, 1, 2, 2-Tetrachloroethane	<2.3
L - The recovery of a spike in the	127-18-4	Tetrachloroethene	<2.4
sample was not within the control	71-55-6	1,1,1-Trichloroethane	<3.2
limits.	79-00-5	1,1,2-Trichloroethane	<3.3
A - Not Analyzed	79-01-6	Trichloroethene	<3.0
NR - No Result - see Remarks	75-69-4	Trichlorofluoromethane	NA
	108-88-3	Toluene	<6.5
D - A standard was not rum and a	75-01-4	Vinyl chloride	<24
measurable (near MDL) peak was not		•	
found at the expected retention time.			
I - Tentative Identification has been	İ		
made through a library search. An			•
authentic standard has not been run.			
The est. conc. is based on response			
relative to an interval standard.	1		
5/ \W \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

istribution

pproved:

ave Bedan, Waste Management Program
Bill Price, Public Drinking Water Program

Laboratory Services Program

Page

Appendix A

MISSOURI DEPAREMENT OF NATURAL RESOURCES DIVISION OF ENVIRONMENTAL QUALITY LABORATORY SERVICES PROGRAM

115708

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

NAME OF FACILITY	Westlakes Land			
SAMPLES COLLECTED	BY Steve Bere	ndzen D	ATE(S) 6-16-81	
NOTE: SAMPLE DESCRIPTION DATE COLLECTED SAMPLE NUMBER	0809 Well #34 6-16-81 81-7835	승기 5 Well #35 6-16-81 81-7836	かきころ Well #38 6-16-81 81-7833	08/0 Well #39 6-17-81 81-7834
pH Units Specific Cond. (umhos/cm	7.1	7.2	- 6.5	6.9
@ 25° C)	600	730	620	660
Milligrams per liter CCD NH ₃ as N NO ₃ + NO ₂ as N Total Phosphorus Filterable Residue (TDS)	56 0.12 0.05 0.24 613	95 1.42 < 0.05 0.41 740	No result 0.90 0.09 0.42 602	45 0.28 0.05 0.27 782
Fluoride Chloride Sulfate Hardness as CaCO ₃ (Ca,Mg)	0.1 44 90 430	0.5 43 < 10 630	0.2 7.9 86 480	0.2 44 210 530
Sodium Calcium Magnesium	16 99 44	19 170 50	12 120 44	20 130 50
Micrograms per liter				
Arsenic Barium Boron Cadmium Chromium	<5 100 <100 9 < 20	13 320 < 100 8 < 20	< 5 260 590 < 2 < 20	< 5 120 < 100 6 < 20
Cobalt Copper Iron Lead Manganese	< 10 < 5 28,000 < 5 970	<pre>< 10 < 5 5,500 < 5 2000</pre>	< 10 < 5 220 < 5 430	< 10 8 16,000 < 5 670
Mercury Selenium Silver Zinc	No result < 5 < 1 11,000	No resu < 5 < 1 4,500	1t No result < 5 < 1 < 10	Log Error <5 <1 1,500

EXHIBIT 14-I (Interim Report on the Proposed Ground Water Sampling Program for the Primary Phase of the Hydrogeologic Investigation, West Lake Landfill, St. Louis County, Missouri, October 1985 prepared by Burns and McDonnell, Kansas City, Missouri) will be produced at such time as it is located by Respondent.

EXHIBIT 14-J (Hydrogeologic Investigation - West Lake Landfill Preliminary Phase Report, dated January 1985 prepared by Burns and McDonnell, Kansas City, Missouri) will be produced at such time as it is located by Respondent.

17

\$

٠.

DUPLICATE

ST. LOUIS COUNTY
DEPARTMENT OF COMMUNITY HEALTH & MEDICAL CARE
DIVISION OF ENVIRONMENTAL HEALTH CARE SERVICES
AIR POLLUTION CONTROL BRANCH

June 1, 1976	4276	
Date	Number	
OPERATIN	IG PERMIT	
This permit to operate to described below is grant	the equipment/process(es) ted to:	
West I	ake Quarry	
7	Jame Jame	
13570	St. Charles Rock Road	
Location of	f Equipment	
Such operation to be pur out in Operating Permit	suant to the conditions set Application No.: 4357	
Equipment/Process(es)		
#1 Aspha	lt Batching Plant	
Cyclone	Collector	
Model:	270 & 370	
99.8% Efficiency		
Stack/Vent Identification	n	
	Blain & Rhoader	
	Assistant Director Air Pollution Control Branch	

(This Permit to be visibly affixed or placed in accordance with Section 612.120 St. Louis County Air Follution Control Code.) Ten Dollar (\$10.00) fee paid.

ST. LOUIS COUNTY DEPARTMENT OF COMMUNITY HEALTH & MEDICAL CARE DIVISION OF ENVIRONMENTAL HEALTH CARE SERVICES AIR POLLUTION CONTROL BRANCH

August 7, 1979	64550
Date	Number
OPERATING PE	ERMIT
This permit to operate the equip described below is granted to:	oment/process(es)
Westlake Quarry & M	aterial
Name	
St. Charles Rock Ro	ad & Taussig Road
Location of Equipm	nent
Such operation to be pursuant to out in Operating Permit Applicat	
Equipment/Process(es)	
Equipment, 110000 (02)	
Dust Suppression	System
Make: Johnson-Ma	rch
600 tons/hour	
500 251.57 11541	
Stack/Vent Identification	
N/A	
Blair	ne Swader
	Assistant Director Jution Control Branch
(This Permit to be visibly affix accordance with Section 612.120	

Follution Control Code.) Ten Dollar (\$10.00) fee paid.

ST. LOUIS COUNTY DEPARTMENT OF COMMUNITY HEALTH & MEDICAL CARE DIVISION OF ENVIRONMENTAL HEALTH CARE SERVICES AIR POLLUTION CONTROL SECTION

August 10, 1987	005563
Date	Number
OPE	ERATING PERMIT
This permit to operate the below is granted to:	e equipment/process(es) described
West Lake Quar	rry
	Name
13500 St. CHar	les Rock Rd.
Locat	les Rock Rd. ion of Equipment
Such operation to be pursu Operating Permit Applicati	ant to the conditions set out in on No. 6887
Equipment/Process(es)	
Mineral Storag	ge Silo
Asphalt Plant	#1
Baghouse-400 S	SCFM
Enforceable Permit Conditi	
Stack/Vent Identification_	
	Blain & Brown
	laine J. Rhoades, Program Manager ir Pollytion Control Section
(This permit to be visibly with Section 612.120 St. trol Code.) Fee paid \$	affixed or placed in accordance Louis County Air Pollution Con-

STATE OF MISSOURI DEPARTMENT OF NATURAL RESOURCES

MISSOURI CLEAN WATER COMMISSION

AUTHORIZATION TO DISCHARGE

UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the Federal Water Pollution Control Act, Public Law 92-500, 92nd Congress, (hereinafter, the Act) as amended, and the Missouri Clean Water Law, (Chapter 644 R.S. Mo. Cum. Supp. 1986, hereinafter, the Law),

Permit No. MO-0108634

Applicant No.

MO-0108634

Owner: West Lake Quarry and Material Company

Owner's Address: 12976 St. Charles Rock Road, Bridgeton, Missouri 63044

Facility Name:

West Lake Quarry and Material Company

Facility Address:

13570 St. Charles Rock Road, Bridgeton, Missouri 63044

Legal Description: U.S. Survey 131

U.S. Survey 131, (NW 1/4, SW 1/4, SE 1/4, Sec. 31 projected), T46N,

R5E, St. Louis County

Receiving Stream & Basin: (10300200-04-00)

Unnamed tributary to Missouri River

200-04-00) (Missouri River and Eastern Tributaries Basin)

is authorized to discharge from the facility described herein, in accordance with the effluent limitations and monitoring requirements as set forth herein:

FACILITY DESCRIPTION

Outfall #001 - Limestone Quarry

Storm water runoff.

Design flow is 700 gallons per minute/occurrence.

This permit only authorizes wastewater discharges under the National Pollutant Discharge Elimination System: it does not apply to other regulated areas. This permit may be appealed in accordance with Section 644.051.6 of the Law.

December 30, 1988

Effective Date

Frederic A Brunner, Ph.D.

Director Department of Natural Resources

October 31, 1993

Permit Administrator for Missouri Clean Water Commission

/Exhibit 17-D

Expiration Date

MO 780-0041 (5-87)

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

2 of 3 **PAGE NUMBER** MO-0108634 PERMIT NUMBER

The permittee is authorized to discharge from outfall(s) with serial number(s) as specified in the application for this permit. The final effluent limitations shall become effective upon issuance effect until expiration of the permit. Such discharges shall be controlled, limited, and monitored by the permittee as specified below:

OUTFALL NUMBER		FINAL	EFFLUENT LIMITA	TIONS	MONITORING REQUIR	REMENTS
AND EFFLUENT PARAMETER(S)	UNITS	DAILY MAXIMUM	WEEKLY AVERAGE	MONTHLY AVERAGE	MEASUREMENT FREQUENCY	SAMPLE TYPE
Outfall #001						
Flow-m³/Day	MGD	**		*	each occurrence	estimate of total
Settleable Solids	ml/l/hr	1.0			once/each occurrence	grab
Non-Filterable Resid (Total Suspended So		45		30	once/each occurrence	grab
pH - Units	su	**		**	once/each occurrence	grab
* Monitoring requi	rement onl	у.				
** pH is measured in of 6.0-9.0.	n pH units	and is not	to be avera	ed. The pH	is limited to the	e range

MONITORING REPORTS SHALL BE SUBMITTED quarterly ; THE FIRST REPORT IS DUE4-28-89
THERE SHALL BE NO DISCHARGE OF FLOATING SOLIDS OR VISIBLE FOAM IN OTHER THAN TRACE AMOUNTS.
B. STANDARD CONDITIONS
IN ADDITION TO SPECIFIED CONDITIONS STATED HEREIN, THIS PERMIT IS SUBJECT TO THE ATTACHED Part I
STANDARD CONDITIONS DATEDOctober 1 19 80 , AND HEREBY INCORPORATED AS THOUGH
FULLY SET FORTH HEREIN.

quarterly

C. SPECIAL CONDITIONS

- 1. Within one year of the issuance date of this permit, the permittee shall submit a completed CWC 105 Form C. All required analytical results shall be submitted.
- 2. This permit may be modified, or alternatively, revoked and reissued, to comply with any applicable effluent standard or limitation issued or approved under Sections 301(b)(2) (C), and (D), 304(b)(2) and 307(a)(2) of the Clean Water Act, if the effluent standard or limitation so issued or approved:
 - (a) Contains different conditions or is otherwise more stringent than any effluent limitation in the permit; or
 - (b) Controls any pollutant not limited in the permit.

The permit as modified or reissued under this paragraph shall also contain any other requirements of the Act then applicable.

3. Permittee shall insure that leachate and storm water runoff from the adjacent Laidlaw, Inc. Landfill shall not be discharged through Outfall #001.

EXHIBITS 19-A THROUGH 19-ZZZ

MINUTES OF CORPORATE DIRECTORS' MEETINGS

Produced simultaneous with, and attached separately to, the 104(e) Response of West Lake Ready Mix Company are copies of minutes of corporate directors' meetings. Respondent hereby asserts a confidentiality claim with respect to these minutes, pursuant to §§104(e)(7)(E) and (F) of CERCLA, 42 U.S.C. §§9604(e)(7)(E) and (F), Section 3007(b) of RCRA, 42 U.S.C. §6927(b), and 40 C.F.R. 2.203(b). Following is a listing of all the minutes, together with the dates covered by each, respectively.

- 19-A: West Lake Ready Mix Company, Taussig Rd., St. Louis County Missouri, January 8, 1952
- 19-B: Minutes of the Meeting of the Board of Directors of the West Lake Ready Mix Company, Taussig Rd., St. Louis County Missouri, April 8, 1953
- 19-C: Minutes of Special Meeting of Directors of West Lake Ready Mix Company, December 30, 1953
- 19-D: Minutes of a Special Meeting of the Directors of West Lake Ready Mix Co., February 4, 1955
- 19-E: Minutes of Special Meeting of Board of Directors of West Lake Ready Mix Company, March 8, 1957
- 19-F: Minutes of a Special Meeting of The Directors of West Lake Ready-Mix Company, June 18, 1964
- 19-G: Minutes of a Special Meeting of The Directors of West Lake Ready-Mix Company, November 17, 1965
- 19-H: Minutes of Special Joint Meeting of The Board of Directors and Shareholders of West Lake Ready Mix Company, June 30, 1971
- 19-I: Minutes of Special Meeting of Board of Directors of West Lake Ready Mix Company, July 1, 1972
- 19-J: Minutes of Special Meeting of Board of Directors of West Lake Ready Mix Company, Inc., December 28, 1972
- 19-K: Minutes of Special Meeting of Board of Directors of West Lake Ready Mix Company, May 1, 1974
- 19-L: Minutes of Special Meeting of Board of Directors of West Lake Ready Mix Company, Inc., March 18, 1975

Minutes of Special Meeting of Board of Directors of West 19-M: Lake Ready Mix Company, Inc., March 16, 1976 Minutes of Special Meeting of Board of Directors of West 19-N: Lake Ready Mix Company, Inc., March 15, 1977 Minutes, Monthly Meeting of The Board of Directors of 19-0: Westlake Quarry and Material Company, January 28, 1986 Minutes, Monthly Meeting of the Board of Directors of 19-P: Westlake Quarry and Material Company, March 25, 1986 Minutes, Monthly Meeting of the Board of Directors of 19-Q: Westlake Quarry and Material Company, April 29, 1986 Minutes, Monthly Meeting of the Board of Directors of 19-R: Westlake Quarry and Material Company, June 24, 1986 Minutes, Monthly Meeting of the Board of Directors of 19-S: Westlake Quarry and Material Company, July 29, 1986 Minutes, Monthly Meeting of the Board of Directors of 19-T: Westlake Quarry and Material Company, August 26, 1986 Minutes, Monthly Meeting of the Board of Directors of 19-U: Westlake Quarry and Material Company, September 23, 1986 19-V: Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, October 28, 1986 Minutes, Monthly Meeting of the Board of Directors of 19-W: Westlake Quarry and Material Company, November 25, 1986 Minutes, Monthly Meeting of the Board of Directors of 19-X: Westlake Quarry and Material Company, January 27, 1987 19-Y: Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, February 24, 1987 Minutes. Monthly Meeting of the Board of Directors of 19-Z: Westlake Quarry and Material Company, March 26, 1987 Minutes, Monthly Meeting of the Board of Directors of 19-AA: Westlake Quarry and Material Company, April 30, 1987 Minutes, Monthly Meeting of the Board of Directors of 19-BB: Westlake Quarry and Material Company, June 2, 1987 19-CC: Minutes, Monthly Meeting of the Board of Directors of

Westlake Quarry and Material Company, June 30, 1987

- 19-DD: Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, August 5, 1987
- 19-EE: Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, September 4, 1987
- 19-FF: Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, October 2, 1987
- 19-GG: Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, October 2, 1987
- 19-HH: Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, November 24, 1987
- 19-II: Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, December 30, 1987
- 19-JJ: Minutes, Monthly Meeting of the Board of Directors of West Lake Quarry and Material Company, January 28, 1988
- 19-KK: Minutes, Monthly Meeting of the Board of Directors of West Lake Quarry and Material Company, March 4, 1988
- 19-LL: Unanimous Consent of Directors of West Lake Ready Mix Co. in Lieu of Annual Meeting of Board of Directors, March 16, 1988
- 19-MM: Minutes, Monthly Meeting of the Board of Directors of West Lake Companies, April 8, 1988
- 19-NN: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, April 28, 1988
- 19-00: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, June 2, 1988
- 19-PP: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, July 8, 1988
- 19-QQ: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, August 19, 1988
- 19-RR: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, September 29, 1988
- 19-SS: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, November 4, 1988
- 19-TT: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, November 17, 1988

- 19-UU: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, December 21, 1988
- 19-VV: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, February 6, 1989
- 19-WW: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, February 22, 1989
- 19-XX: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, March 22, 1989
- 19-YY: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, April 26, 1989
- 19-ZZ: Statement of Unanimous Written Consent of Directors of West Lake Ready Mix Company in Lieu of Meeting of Board of Directors, May 25, 1989
- 19-AAA: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, May 30, 1989
- 19-BBB: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, June 23, 1989
- 19-CCC: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, July 26, 1989
- 19-DDD: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, September 8, 1989
- 19-EEE: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, September 22, 1989
- 19-FFF: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, October 25, 1989
- 19-GGG: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, December 8, 1989
- 19-HHH: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, January 2, 1990
- 19-III: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, January 25, 1990
- 19-JJJ: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, February 28, 1990
- 19-KKK: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, March 28, 1990

- 19-LLL: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, April 20, 1990
- 19-MMM: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, May 29, 1990
- 19-NNN: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, June 29, 1990
- 19-000: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, August 14, 1990
- 19-PPP: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, September 24, 1990
- 19-QQQ: Minutes, Special Meeting of the Board of Directors of The West Lake Companies, October 19, 1990
- 19-RRR: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, October 31, 1990
- 19-SSS: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, November 28, 1990
- 19-TTT: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, December 20, 1990
- 19-UUU: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, January 31, 1991
- 19-VVV: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, March 6, 1991
- 19-WWW: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, March 27, 1991
- 19-XXX: Minutes, Special Meeting of the Board of Directors of The West Lake Companies, April 22, 1991
- 19-YYY: Minutes, Special Meeting of the Board of Directors of The West Lake Companies, April 23, 1991
- 19-ZZZ: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, June 5, 1991

PHASE II INVESTIGATION FINAL REPORT

U.S. REAL ESTATE DIVISION FORD FINANCIAL SERVICES EARTH CITY, MISSOURI

DAMES & MOORE

D&M Job No. 19943-002-045 June 26, 1990

Exhibit 20-A

11701 BORMAN DRIVE, SUITE 340, ST. LOUIS, MISSOURI 63146 (314) 993-4599 FAX NO. (314) 993-4895

June 14, 1990

Mr. John Basilico United States Real Estate Ford Financial Group 13517 Lake Front Drive Earth City, MO 63045-1414

RE: Phase II Site Investigation

Earth City Property Adjacent to West Lake Landfill

Dames & Moore Job No.: 19943-002-045

Dear Mr. Basilico:

Enclosed for your information are two (2) copies of the Phase II Site Investigation final report for the above referenced property.

Should you have any questions or wish to discuss this report in any way, please do not hesitate to contact Ms. Linda Black or myself.

Very truly yours,

DAMES & MOORE
A Professional Limited Partnership

Gary F. Vajda, P.E.

Rattner (Ltd.)

Managing Principal

gfv/ken Enclosure

PHASE II INVESTIGATION REPORT

U.S. REAL ESTATE DIVISION FORD FINANCIAL SERVICES EARTH CITY, MISSOURI

TABLE OF CONTENTS

1.0	INTR	ODUCTION 1
	1.1	Executive Summary
	1.2	Project History Summary 2
	1.3	Scope of Work Summary 3
2.0	OVE	RLAND GAMMA SURVEY 3
	2.1	Field Investigation
	2.2	Investigation Results
3.0	SOIL	SAMPLING 5
•••	3.1	Field Investigation
	3.2	Investigation Results
4.0	SEDI	MENT SAMPLING
7.0	4.1	Field Investigation
	4.2	Investigation Results
5.0	SOIT.	BORINGS/DOWNHOLE GAMMA LOGGING
5.0		
	5.1	Field Investigation
	5.2	Investigation Results
6.0		UNDWATER MONITORING
	6.1	Monitoring Well Isolation
	6.2	Sample Collection
	6.3	Investigative Results
7.0	CON	CLUSIONS
	7.1	Radiological Investigations
	7.2	Inorganic and Organic Chemical Investigation

TABLE OF CONTENTS

LIST OF TABLES

Table 1 -	Overland Gamma Radiation Survey Measurements
Table 2 -	Volumes & Preservatives - Soil & Sediment Samples
Table 3 -	Soil Samples - Organic & Inorganic Data Summary
Table 4 -	Soil Samples - Radiologic Data Summary
Table 5 -	Sediment Samples - Organic & Inorganic Data Summary
Table 6 -	Sediment Samples - Radiologic Data Summary
Table 7 -	Downhole Gamma Radiation Measurements
Table 8 -	Volumes and Preservative - Water Samples
Table 9 -	Water Samples Organic and Inorganic Data Summary
Table 10 -	Water Samples Radiological Data Summary
Table 11 -	Sample Reanalysis Data

APPENDICES

- Appendix A Certificates of Calibration Appendix B - Chain-of-Custody Records Appendix C - Laboratory Analytical Data
- Appendix D Soil Boring Logs
- Appendix E Well Construction Diagrams
- Appendix F Groundwater Field Measurements

1.0 INTRODUCTION

In April, 1990, Ford Financial Services Group, U.S. Real Estate authorized Dames & Moore to proceed with a Phase II Site Investigation to further document pre-transaction conditions at property adjacent to a proposed National Priorities List (NPL) site. This report presents a summary of the field techniques employed during this investigation and conclusions based upon analytical results from collected samples.

1.1 Executive Summary

The Phase II Site Investigation involved a more in-depth investigation of organic, inorganic, and radiological contamination of the Ford Property that is believed to be related to the adjacent West Lake Landfill. Upon review and evaluation of all information obtained from this investigation, several concluding remarks can be made which best summarize this effort.

First, the gamma radiation survey conducted on surface soils in areas north and west of the West Lake Landfill (i.e., areas which receive a large amount of surface runoff from the landfill) indicated that there is no significant surface radiological contamination present. Radiological contamination present within the landfill, therefore, does not appear to have contributed any significant contamination due to surface runoff to the 23 acres surveyed.

Second, in addition to the surface soil survey just described which required the use of a direct-reading meter, surface soil samples where also collected from 0-12 inches in depth from property locations adjacent to the landfill and submitted for more in depth chemical and radiological analysis. Soil samples were collected in locations where contamination was suspected from the Phase I effort and in locations where contamination might reasonably be expected. Although very low levels (parts per billion) of organic contamination were provided in the analytical report for the two soil sample composites, these values were actually below the analytical limit of detection and are, consequently, not significant. Of all the soil samples collected (a total of 20), only the samples collected from the two (2) locations where radiological contamination had been indicated from the Phase I investigation had radiological contamination (i.e., the biased samples). No further surface radiological contamination beyond these biased locations is evident based upon this information and the gamma radiation survey.

Third, sediment/soil samples were collected and analyzed from four (4) locations where chemical or radiological contamination might reasonably be expected to have migrated from the landfill via surface water. As with the soil samples, only low level organic chemical contamination was indicated which is likewise believed to be attributed to the sampling technique and not to actual soil contamination. Radiological contamination is also not evident in these samples.

Fourth, subsurface soil conditions were also surveyed radiologically down to groundwater in several locations to the north and west of the landfill. Gamma radiation and volatile organics were measured in soil borings down to groundwater using a GM-type survey meter and a photoionization detector, respectively. Neither radiological contamination nor chemical contamination of any type was evident.

Fifth, groundwater was sampled and analyzed chemically and radiologically by installing monitoring wells in the same soil borings that were mentioned previously. Low level (part per billion) concentrations of some organic chemicals were detected in several of the groundwater samples. Several of these, however, are believed to be attributable to background contamination from the laboratory, and as such, do not represent a significant environmental concern. Two semi-volatile BNAs (chrysene and Bis (2-ethylhexyl)phthalate) were, however, also detected in very low levels (1-27 ppb) in four (4) of the well samples. Other chemical contaminants tested for in the groundwater (i.e., metals, cyanide) were not present in sufficient concentration to represent a significant environmental concern. Although radiologically speaking there were conflicting results from the two laboratories used, there does not in any case appear to be significant groundwater contamination. The one parameter that was tested and found to be somewhat elevated in some of the water samples (gross alpha) is of secondary importance since the sum of the individual components that typically comprise this parameter failed to confirm the gross alpha totals.

With the exception of two (2) biased locations adjacent to the West Lake Landfill where radiological contamination is evident (B1 and B2), it is unlikely that the results provided from this investigation can be interpreted as evidence that the radioactive material resident in the West Lake Landfill has migrated to Earth City property.

1.2 Project History Summary

In December, 1989, Ford retained Dames & Moore to prepare an assessment of the radiologic conditions at their properties in Earth City, Missouri, as part of a pre-divestiture due diligence effort. The scope of the Phase I effort was primarily to respond to concerns raised by the proximity of the West Lake Landfill, located immediately to the east of the property under review (Figure 1). On October 23, 1989, the landfill was proposed for addition to the National Priorities List under CERCLA, due to improper acceptance during the early 1970's of radiologic materials primarily from the Department of Energy's Latty Avenue operations.

Upon completion of a review of available information, and a limited sampling effort, Dames & Moore concluded that the data suggests that significant off-site migration of radioactive contaminants from the landfill via groundwater has not occurred. However, it was recommended that surface contamination attributable to landfill runoff be further characterized.

This Phase II Investigation has been developed to document more extensively field conditions by means of additional soil and water sampling for an expanded set of parameters, believed to be more representative of potential landfill contents.

1.3 Scope of Work Summary

The services performed during this Phase II investigation included the following five elements:

- Overland Gamma Survey Gamma radiation levels were measured at one centimeter and one (1) meter above the ground surface to ascertain whether additional areas of surface radioactive contamination exist;
- o Surface Soil Sampling Discrete and composite soil samples were collected in the two known "hot spots", in random areas, and in one background location;
- o Sediment Sampling Discrete sediment samples were collected from drainage areas likely to be influenced by runoff from the landfill;
- o Soil Borings/Downhole Gamma Logging Seven soil borings were advanced to 15-25 feet depths. Cuttings were screened for organic vapors and for radiation levels. Gamma radiation levels were also measured and recorded inside the borehole, advancing in six-inch increments to the water table; and
- O Groundwater Sampling Monitoring wells were installed at each of the borings. Samples were collected for laboratory analysis for organic, inorganic, and radiologic parameters.

2.0 OVERLAND GAMMA SURVEY

Between April 9 and 13, 1990, Dames & Moore personnel conducted an overland gamma radiation survey of 23 acres adjacent to the landfill which had not previously been surveyed. These measurements would indicate areas, if any, where radiation levels were elevated above ambient background.

2.1 Field Investigation

The overland gamma survey covered the areas shown on Figure 2. The area to the north of the landfill, and to a lesser extent, along Old St. Charles Rock Road were surveyed to assess potential migration of radiologic materials via surface routes. Areas adjacent to the recently excavated drainage ditch/lake were surveyed to assess the levels of radiation in the material dredged from the ditch, which may have intercepted potentially contaminated groundwater.

The gamma radiation survey was set up using a 10 x 10 meter survey grid to maintain reproducibility and accuracy. Each section was first marked with stakes, using the S66 48'41" E line, road coordinates, and chain-link fence which delineates the landfill, as the three primary reference lines. Section grid lines were established 90 degrees from the reference lines at 10 meter intervals. Three grids were established - the largest encompassed the area north of the landfill and covered approximately eight (8) acres. The second was established to the west of Old St. Charles Rock Road in an area of disturbed soils recently excavated from a nearby drainage ditch/lake. The third was also established west of Old St. Charles Rock Road and paralleled nearly the entire Ford/West Lake common boundary over an area of soils excavated from the nearby drainage ditch/lake.

Two calibrated Bicron microrem radiation survey meters were used for radiation level measurements at each intersection of the grid at one centimeter and one meter above the ground surface. These instruments use a tissue-equivalent plastic scintillator as the detection medium to provide accurate dose rate information relative to biologic tissue. An instrument operability check, which included a battery, background and source check was performed daily prior to use and several times during use, to assure property instrument operation while performing the survey. Both survey instruments were calibrated by the manufacturer and certificates of calibration are attached as Appendix A.

2.2 Investigation Results

Gamma radiation levels measured during the survey of the property are tabulated in Table 1. A map of the grid points is attached as Figure 3. Background radiation measurements were recorded from several areas off-site and in ambient areas located on-site. The average background dose rate for the two instruments in these areas ranged from three (3) to six (6) microrem per hour which corresponds with levels identified by ORNL in a study titled "State Background Radiation Levels 1975-1979" (report #TM-7343) which gives levels for the East St. Louis area of between four (4) and eight(8) microrem per hour. All measurements made on the property represented actual instrument readings without background data subtraction. Raw data tabulated in Table 1, represent readings obtained at each survey point one meter and one centimeter above ground surface. The primary reference point for each grid is indicated on Table 1 and the site map (Figure 3) as point 0,0. All tables give the survey point locations

based on their position relative to the reference point within the data matrix.

The U.S. Environmental Protection Agency guidelines for site cleanup and management of residual uranium and thorium (40 CFR 192, Subparts B & E) require that the exposure rate measured at a distance of one meter above the ground surface be less than 20 microrems per hour above background. In the case of the present survey, results did not exceed twice the measured background rate in any of the areas surveyed.

Contaminants located within the West Lake Landfill did not appear to influence the surface gamma radiation readings over the 23 acres surveyed. Although some fluctuations were present in the data, elevated gamma radiation readings within three times the average background measurement are not considered to be of consequence unless a systematic increase is noted. Site-wide trends were not readily apparent from the collected data.

3.0 SOIL SAMPLING

Surface soil samples were collected at several locations to characterize existing soil conditions in areas of the site adjacent to the landfill where contamination is suspected, and where contamination might reasonably be expected.

3.1 Field Investigation

Two composite soil samples (COMP-1 and COMP-2) were collected from the areas indicated on Figure 4 (shown as C1 and C2). It is believed that the soils dredged from the ditch along Old St. Charles Rock Road has been spread over these areas. These soils were therefore sampled to indicate whether any contaminants may have settled out from surface waters carried in the ditch. Each samples was collected from six points in the area shown, and submitted for analysis for total petroleum hydrocarbons (TPH), semi-volatiles, pesticides, PCBs, herbicides, metals, and cyanide, as well as radiological parameters.

Six unbiased soil samples (UB1-UB6) were collected at the locations shown on Figure 4. These areas were distributed along the general perimeter of the landfill to provide information regarding existing soil conditions. Each sample was collected at 0-6 inch depths and submitted for radiological analysis.

Biased soil samples were collected at two locations (B1 and B2) as shown on figure 4, which were identified during Phase I as having elevated gamma radiation levels. Samples B1A, B1B, B2A, and B2B were collected at 0-6 inch depths. Samples B1C and B2C were collected at 6-12 inch depths. All six samples were analyzed for several radiological parameters.

Samples were collected manually using either a stainless steel trowel or a stainless steel hand auger. Sampling equipment was decontaminated with Alconox detergent wash and a distilled water rinse between each sample.

Samples requiring radiological analysis were placed in plastic bags provided by the laboratory. Organic and inorganic samples were placed in jars provided by the laboratory (Table 2). Organic and inorganic samples were placed in an iced cooler. All samples were shipped to the respective laboratories via overnight delivery accompanied by Dames & Moore chain-of-custody records (Appendix B).

3.2 Investigation Results

A summary of organic and inorganic data is presented in Table 3. For nearly all parameters, there are no indications that samples COMP1 and COMP2 vary significantly from the background sample BKG.

Exceptions of note are the results of analyses for semi-volatile compounds. No semi-volatiles are indicated in the background sample, however, two compounds were detected in COMP1 and six compounds were detected in COMP 2. The semi-volatile compounds detected in the composite samples have been attributed to the sampling technique, which involved mixing the composite inside a plastic zip-lock bag. The background sample was collected directly into sample jars without contact with a bag.

A summary of the radiological data for soil samples is presented in Tables 4A, 4B, 4C, and 4D. All values are reported in units of picocuries per gram of sample plus or minus the error associated with the analysis at a 95 percent confidence level (± 2 sigma). All soil samples were analyzed for gross alpha and gross beta content and the specific nuclides uranium-234, 235/236, 238; thorium-230,232; potassium-40; cesium-137 and radium-226, 228. Values reported as less than (<) a specific value, are considered below the analytical instrument's lower limit of detection. Table 4A shows that the analytical results reported for unbiased samples UB1 through UB6 are indistinguishable from the background sample collected at the same depth as well as background samples analyzed for the Phase I investigation. Biased samples collected in the two areas identified as above background in the Phase I investigation, show, as expected, elevated gross alpha and gross beta.

For area 1 (Table 4B) gross alpha and gross beta for biased samples are elevated by factors of 55 and 10.6 respectively, while for Area 2 (Table 4C) levels are elevated by factors of 200 and 31, respectively. Similarly, elevated levels of uranium-234 and 238 are reported at 6.5 and 6 times background (Table 4B) and factors of 13.3 and 8.1, respectively (Table 4C). Thorium-230 values in sample B1A and B1B average over 400 times background, while B2A and B2B average over 900 times background. Thorium-232 however averaged only 3 times and

6 times background for areas 1 and 2, respectively. Ra-226 concentrations in the biased soil samples analyzed from areas 1 and 2 averaged 31 and 34 times background respectively. The above results refer only to the data reported for the 0-6" sample depth. The reported concentrations for the above mentioned nuclides in the 6-12" depth are equally elevated for the area 1 sample but are somewhat lower for the area 2 sample.

Composite soil sample results reported in Table 4D are indistinguishable from background.

4.0 SEDIMENT SAMPLING

Sediment samples were collected at four locations at the site to characterize existing conditions in areas where contamination might reasonably be expected to have migrated via surface water.

4.1 Field Investigation

Four sediment samples (S1-S4) were collected at the locations shown on Figure 5. Samples S1 and S2 were collected from the bottom of the drainage ditch which runs along Old St. Charles Rock Road. These samples were analyzed for several radiological parameters.

Sample S3 was collected from the bottom of a ponded area near St. Charles Rock Road. Sample S4 was collected from beneath the outlet of a surface water drain which originates at the base of the landfill berm, and emerges from the embankment of Old St. Charles Rock Road. Both samples were analyzed for organic and inorganic as well as radiological parameters.

Samples were collected using either a stainless steel trowel or a stainless steel hand auger. Sampling equipment was decontaminated with Alconox detergent wash and a distilled water rinse between each sample.

Radiological samples were placed in plastic bags provided by the laboratory. Organic and inorganic samples were placed in jars provided by the laboratory (Table 2). Organic and inorganic samples were placed in an iced cooler. All samples were shipped to the respective laboratories via overnight delivery accompanied by Dames & Moore chain-of-custody records (Appendix B).

D&M Job No. 19943-002-045

4.2 Investigation Results

A summary of organic and inorganic data is presented in Table 5, as a comparison with background soil sample BKG. For nearly all parameters, there are no indications that samples S3 and S4 vary significantly from the background sample. Mercury was detected only in sample S4, at 0.18 ppm only slightly above the reported detection limits.

- Semi-volatile analytical results are similar to the soil samples, where several compounds were detected. Again, this is attributed to the sampling technique which involved mixing of the composite sample inside of a plastic zip-lock bag. The background sample was collected directly into sample jars without contact with a bag.

A summary of the radiological data is presented in Table 6. Review of this table shows that, for the radiological parameters specified, all data is indistinguishable from background except for the gross alpha value of sample S4 which is reported as 6.6 times background. Upon reanalysis of this sample by ITC, however, a much lower gross alpha value was obtained. For reasons explained in Section 7.1.3 of this report, the second analysis, which indicated a gross alpha level of 19.3 ± 8.6 , is considered to be more valid.

5.0 SOIL BORINGS/DOWNHOLE GAMMA LOGGING

Soil borings were advanced at seven (7) locations at the site to observe and assess subsurface soil conditions to the depth of the groundwater table. Additionally, gamma radiation was measured inside each borehole to provide vertical profiles of radiation levels.

5.1 Field Investigation

Soil borings were advanced to the groundwater table at seven locations shown on Figure 6, using an ATV-mounted hollow-stem auger drill rig. Samples were retrieved using a 3-inch diameter continuous sampler. Downhole drilling equipment was decontaminated between borings by pressure washing with water.

Geological observations made of the retrieved soils were maintained on Soil Boring Logs presented in Appendix D. Retrieved soils were field screened for VOCs with a photo-ionization detector, and for radiation levels with a G-M type survey meter.

Gamma radiation levels were measured inside the auger stem using an Eberline ESP-2 ratemeter and shielded SPA-3 scintillation detector. The detector was advanced in six-inch increments to depths approaching groundwater. Gamma logging measurements are shown in Tables 7-101 through 7-107, with graphical presentations in Figures 7-101 through 7-107.

5.2 Investigation Results

Borings depths ranged from 15 to 25 feet depending on the depth to groundwater. Soil types varied from silty to sandy silt, typically becoming coarser with depth. Some stiff silt or clay was noted. No volatile compounds were detected at any depth in any boring. Radiation levels were consistent with background levels.

All gamma logging data was consistent with background levels.

6.0 GROUNDWATER MONITORING

Groundwater monitoring wells were installed in each of the seven (7) soil borings at the locations shown on Figure 6. Well construction details are described in Section 6.1 and diagramed in Appendix E. Ten samples were collected for laboratory analysis according to the techniques discussed in Section 6.2. Analytical results are discussed in Section 6.3.

6.1 Monitoring Well Installation

As described in Section 5.0, soil borings were advanced by hollow stem auger. Upon completion of each boring, a 10-foot length of 2-inch diameter 0.010 slotted PVC well screen was placed to the bottom of the boring. PVC riser pipe was extended above the ground surface. A sand filter-pack was placed about the well screen as the auger flights were gradually removed from the borehole, typically to 2-feet above the top of the screened interval. A 1.5 - 2 feet thick bentonite pellet seal was placed above the sand pack. In wells MW101 and MW102, a cement slurry with a bentonite additive was placed from the top of the seal to a few feet below ground surface. At all wells, a cement-aggregate mixture was placed to the ground surface to secure the steel well protector, and to form a small concrete pad to deflect surface water away from the well. The PVC riser was fitted with a PVC screw cap and a padlock was placed on the steel protector. Well construction diagrams are shown in Appendix E.

Efforts by drilling contractor Brotcke to develop MW104 on April 12 using a tank of compressed nitrogen to drive an air-lift system were not successful. On Friday, April 13, 1990, personnel returned to develop the wells using an air compressor to drive water from the well. Purging efforts were continued for 30 minutes at each of the four wells (MW101, MW102, MW103, and MW104). The three remaining wells were not accessible due to wet ground conditions, and were developed by bailing.

6.2 Sample Collection

Groundwater sampling was conducted by Dames & Moore personnel on April 17 and 18, 1990. The following procedure was used at each well.

The depth to water from the top of the PVC casing was recorded to the nearest 1/16" using a chalked steel-tape. Standing water was purged from the well using a disposable polyethylene bailer (Voss Technologies). After removing one well volume, field measurements of temperature, pH and specific conductivity were made using a calibrated Hydac meter (Cambridge Scientific Industries) outfitted with an Orion pH probe. Field measurements were taken following each subsequent well-volume purged until three successive sets of measurements fell within the following ranges:

Temperature: +/- 0.5° C

pH: +/- 0.1 pH unit Conductivity: +/- micromhos

Typically, four (4) or five (5) well volumes were sufficient to accomplish stabilization. Field measurements are summarized in Appendix F. Based on contaminant levels during soil boring activities, purged water was discharged to the ground surface.

Upon stabilization, water samples were collected for laboratory analysis. Table 8 shows the volumes collected and preservations used to constitute one sample.

Samples were shipped via Federal Express to the appropriate laboratories for analysis (MW109 was hand delivered to Envirodyne), under Dames & Moore chain-of-custody procedures (Appendix B). Organic and inorganic samples were shipped in iced coolers. Each day, all VOA sample vials were placed in the same cooler, and were accompanied during shipment by trip blanks (TR-1 and TR-2).

6.3 <u>Investigative Results</u>

Data from organic and inorganic analyses are summarized in Table 9. Data packages from Southwest Laboratories and Envirodyne Engineers are provided in Appendix C. Data from the radiological analyses are summarized in Table 10. Data packages from ITC and CEP are provided in Appendix B.

A review of the organic and inorganic data indicated that pesticides, PCBs, herbicides, and cyanide were not detected. Several VOCs were identified near or below detection levels. Methylene chloride was detected at low levels (1-26 ppb) in all samples analyzed by Southwest. Similarly, acetone was detected (3-17 ppb) in most samples. Both compounds were detected in

the Southwest QA/QC method blank, and are frequent laboratory contaminants. The absence of these compounds in the Envirodyne analysis of MW109 (duplicate of both MW102 and MW108), reinforces the interpretation that the methylene chloride and acetone results are not accurate. Low levels of 1-1 dichloroethane are indicated in well MW102 and MW109 (3 ppb and 6 ppb, respectively). Toluene, ethyl benzene, and xylene were indicated in well MW103 in low levels also.

Two BNA (binuclear aromatic) compounds, chrysene and bis (2-ethylhexyl) phthalate, were also indicated in low levels in four (4) of the monitoring wells. Bis (2-ethylhexyl) phthalate was present in MW102, MW105, MW106, and MW109D while chrysene was present only in MW102.

Several metals were detected at low levels as well. Copper and zinc were consistently indicated in samples analyzed by Southwest. Antimony and nickel were also indicated in approximately half of the samples by Southwest. EEI/TCT reported the presence of arsenic, mercury, selenium, and silver in the two samples which they had analyzed (MW109 and MW109D). While there is a wide disparity in the metals results presented by the two laboratories, none of the actual reported quantities are at significant levels to be of concern.

Results of radiological analyses for groundwater samples collected during the Phase II investigation are reported in Tables 10A through 10D. Due to the propensity of groundwater samples collected from wells to contain filterable soil particulates which can skew results, all samples were analyzed as raw unfiltered water and as filtered water using a 0.45 micron filter medium. All results are reported as picocuries per liter of sample plus or minus the 2 sigma associated error. Numbers reported as less than (<) the reported value are below the limit of detectability for the given nuclide and analytical method. All results reported for filtered samples are indistinguishable from background data as represented by the off-site well water results of Table 2 in the Phase I report. Further, the filtered data would easily meet all existing radiological limits established for drinking water by the EPA (40 CFR 141). Of the unfiltered results four samples (MW-103U, MW-105U, MW-106U, and MW-107U) would not meet the EPA gross alpha criteria of 15 pCi/l for drinking water, but would meet all other established limits. However, since raw unfiltered groundwater would not be acceptable as drinking water, this comparison serves no purpose.

7.0 CONCLUSIONS

7.1 Radiological Investigations

1

7.1.1 Overland Gamma Survey

The results of the overland gamma survey discussed in Section 2 of this report clearly show that all areas surveyed were indistinguishable from ambient radiation levels associated with

nearby off-site locations. This conclusion is further supported by the results of the unbiased and composite soil sample analyses which were also indistinguishable from background radionuclide concentrations for the Phase II investigation area.

7.1.2 Soil

As discussed above, all unbiased and composite soil samples collected randomly within the 23 acres area of investigation, were found to have radionuclide concentrations similar to those measured for samples representing ambient (background) conditions collected for the present study, and those collected as background samples for the Phase I investigation. With regard to the two biased samples (B1 and B2) where contamination is evident, refer to Section 7.1.5 for details.

7.1.3 Sediment

Comparison of sediment samples to background soil samples collected for Phase I and Il shows that all sediment results reported are less than or equal to the corresponding background concentration with the exception of the gross alpha result reported for sample S4. This sample was subjected to reanalysis of only the gross alpha parameter by ITC and the result reported to Dames & Moore, shown in Table 11, was 19.3 ± 8.6 . The original S4 gross alpha value was not confirmed by the reanalysis. This makes the initial analytical result a highly suspect data point, in that, several of the individual nuclides analyzed are alpha emitters, namely U-234, 235/236, 238, thorium-230 and 232 and radium-226. These nuclides are by far the most abundant alpha emitters in nature and therefore their sum should represent the majority of the gross alpha activity present. Because the sum of the individual nuclides is only 7.2 pCi/g, and the analytical techniques used to measure the individual nuclides is more precise than the gross alpha measurement, especially for a medium such as soil, the gross alpha measurement must be considered of secondary importance. Further, naturally occurring nuclides which are decay products of the marker nuclides may add to the gross alpha concentration, but are considered to be in equilibrium with their parent nuclide and therefore would not add significantly to the above calculated alpha contributions of the individual nuclides.

7.1.4 Groundwater

As discussed in Section 6.3, groundwater samples were analyzed as unfiltered and filtered to provide information on the quantity of filterable, and therefore undissolved particulates, resident in the samples. All results reported in Tables 10A through 10D for filtered samples easily meet EPA drinking water standards for gross alpha (15 pCi/l), gross beta (50 pCi/l) and radium-226 + 228 of 5 pCi/l. Further, all unfiltered samples meet these criteria except for the

gross alpha values reported for sample MW103-U, 17.2; MW105-U, 16.9; MW106-U, 101; and MW107-U, 202 pCi/l. The gross alpha values reported for these unfiltered samples are also of secondary importance since the sum of the individual nuclide concentrations fail to confirm the gross alpha values (see Section 7.1.3).

Groundwater sample MW102 was also subjected to quality assurance checks having a sample duplicate analyzed and a sample split analyzed by an independent laboratory. The results of both tests confirm the results of the original analysis as reported by IT Corporation. Most values for all tests were reported as below the limit of detection.

7.1.5 Biased Soil Samples

To provide additional characterization of the two limited hot spot areas identified during the Phase I study, the survey team was directed to resurvey the original areas, reidentify the location providing the highest gamma radiation level and remove 2-6" soil samples to a total depth of 12" to provide preliminary characterization of the nuclides present. These data are reported in Tables 4B and 4C.

For Area 1 (Tables 4B) the major nuclides identified as significantly above background are Th-230, Ra-226, U-234, and U-238. These results are confirmed in the sample duplicate analyzed by ITC and in the sample split analyzed by CEP except for Th-230. The discrepancy in the results is due to the differences in analytical techniques used by the two laboratories. Selected analytical results reported for original samples in Table 4B were reanalyzed with results shown in Table II. The reanalysis confirmed the original test results.

For Area 2 (Table 4C), the analytical parameters and major nuclides identified as present in concentrations more than 3 times background were gross alpha, gross beta, Th-230, U-234, U-238, and Ra-226.

Again for sample B2A, as for B1A, the duplicate of the original sample analyzed by ITC confirmed the initial results. The split sample with CEP again did not identify Th-230 in similar quantities, nor were gross alpha and gross beta results reported by CEP similar to the ITC data. Both laboratory technique and measurement capability differences are responsible for these discrepancies. Regardless of the CEP results, any regulatory bodies which would govern cleanup of the area would consider the highest reported results for regulatory purposes and therefore the CEP data splits would become meaningless. Further, this round of soil sampling would only serve to establish the highest potential concentration of nuclides in the area based on surface gamma radiation results. Further area characterization would be required to determine the vertical and horizontal extent of the contamination before clean-up activities could proceed. Due to the elevated levels of uranium-234 and 238 as well as radius-226 in these biased samples it is likely that this material originated from the West Lake Landfill property and found its way

to the present location via surface water erosion.

7.2 Inorganic and Organic Chemical Investigation

During the course of the Phase II investigation of the Earth City property, several different classes of both organic and inorganic contaminants were tested for in adjacent surface soils, groundwater, and drainage ditch bottom sediment. Organic contaminants tested for included total petroleum hydrocarbons (TPH), semi-volatile organics, pesticides, PCBs, herbicides, and volatile organics (VOCs). Inorganic contaminants tested for included metals and cyanide.

7.2.1 TPH

Surface soil composite samples (2) collected from areas adjacent to the West Lake Landfill had TPH levels below background. Sediment samples (2) collected from the bottom of a ponded area near the St. Charles Rock Road and from beneath the outlet of a landfill surface water drain, likewise had TPH levels below background.

7.2.2 Semi-volatiles

Low level concentrations (10-50 ppb) of several semi-volatile organic compounds were detected in both surface composite soil samples. Their presence is attributed to the sampling technique, which involved mixing the composite inside a plastic zip-lock bag. Plastic bags of this type often contain residual low level semi-volatiles. The sediment samples likewise contained low level semi-volatiles (10-19 ppb) which can be attributed to sampling technique.

Two semi-volatile BNAs, chrysene and bis (2-ethylhexyl)phthalate were detected in levels near or below detection limits in one and three monitoring wells, respectively, and do not represent a significant environmental concern.

7.2.3 Pesticides, PCBs, Herbicides, Cyanide

There were no detectable levels of any of these contaminants in any of the three sampling media.

7.2.4 VOCs

Volatile organics were tested for only in the eleven (11) groundwater samples. Two (2) VOCs, methylene chloride and acetone, were present in low concentrations in virtually all groundwater samples tested. These samples were analyzed by Southwest Laboratory and both of these VOC components, which are frequent laboratory contaminants, were detected in Southwest's QA/QC method blank. Consequently, this provides further evidence that the results for these contaminants are due to background contamination from the laboratory environment and as such, are not valid.

7.2.5 Metals

For both the soil sample composites (2) and the sediment samples (2), all metals detected do not vary significantly from background levels. Groundwater samples were analyzed by two separate laboratories: Southwest Laboratory and EEI/TCT. Low concentrations of copper, zinc, antimony, and nickel were detected by Southwest while EEI/TCT detected very low levels of arsenic, mercury, selenium, and silver. None of the levels detected represent a significant environmental concern.

SUMMARY OF GAMMA RADIATION FIELD MEASUREMENTS FOR FORD, EARTH CITY RADIOLOGICAL SURVEY EARTH CITY, MISSOURI

NORTHERN GRID

SURVEY LOCATIONS (READINGS ARE IN MICROREM/HOUR AT 1 METER, AND 1 CM ABOVE GROUND SURFACE)

(E&W	W0	W1	W2	W3	W4	₩5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30	w31 k	i32 k	133 1	w34	w35 1	w36	w37	w38	W39	W40	W41	W42
	***	***	****	*****	****	****	****	****	****	****	*****	****	****	****	****	****	****	****	****	****	t*t****	****	****	****	****	****	****	***	****	****	*****	****	****	***	****	****	****	****	****	****	*****	****	****
(N&S	-1					- 1	1	1	1			j	1	i	١	۱ ا						· 1	1	1	i	1	1	- 1	1	1	1	}	. [1	-1	: 1	T		700 200	1	1	1	1
NO	5,6	6,6	7,7	5,5	5,6	6,6	7,7	7,7	6,6	6,7	5,5	5,6	8,8	6,7	6,6	7,6	7,7	6.7	8,8	7.7	6.7	6.6	7.7	5.5	6.7	7.7	6.7	6.7	6.7	7.7	6.7	6.61.6	7 6	5.7	5.5	6.6	6.7	6 7	6.6	6.5	5 7	6 7	7.6
Н1	5,5	7,6	7,7	5,6	6,6	7,6	6,6	7,7	8,7	7,6	7,7	7,6	6,6	6,7	6,6	6,7	7,6	7,6	6,6	6,5	6.6	7.7	8.8	7.7	7.8	7.6	5.7	6.7	7.8	7.6	7.6	7.7 6	6 5	7	7.7	6.7	6.5	8.8	7.6	7.6	7.6	6.7	5.5
N2	7,7	5,5	6,7	6,7	7,7	6,6	7,7	8,8	8,8	8,8	6,6	8,7	6,7	7,7	8,8	6,7	7,8	7,6	7,8	6,7	8,8	6,6	8,8	5,5	7,7	6.6	6.7	8.7	7.7	6.6	7.7	7.6	.6 6	5.5	8.7						5,5		
н3	5,6	5,6	7,6	5,5	6,6	5,6	6,7	7,7	7,7	7,7	7,7	6,6	7,7	6,6	7,7	7,7	6,7	7,7	8,8	6,7	6,8	6,7	7,7	7,8	7.8	7.6	6.7	7.7	5.6	7.8	6.7	6.51 6	5.51 6	5.71	6.7	5.6	7.6	5.6	6.6	7.7	5.6	6.5	7.7
N4	S/B	5,5	6,6	5,5	7,7	6,7	7,6	6,7	7,6	5,7	6,6	7,8	7,8	6,7	7,8	7,7	6,6	6,5	7,7	6,5	7,7	7,8	7,7	5,5	7,8	7,8	7,71	8,7	7.6	6,7	5,51	8.71 7	7.61 7	7.7	7,6	7.7	6,5	6.6	6.7	6.5	5.5	5,5	7.7
N5	1	S/B	5,6	6,5	5,6	5,5	7,6	6,7	5,4	6,5	6,7	8,7	6,6	7,7	7,7	6,6	8,8	6,7	6,6	7,7	7,7	6,6	7,7	7,7	6,7	5,5	7,6	8,8	7,7	7,7	6,6	6,6 6	6,6 6	5,5	7,6	6,6	5,5	6,5	7,8	7,6	6,6	5,5	5,6
И6			6,6	5,5	5,5	5,5	6,6	5,8	6,6	6,5	7,8	7,7	7,7	6,6	7,8	6,5	5,5	6,5	5,6	8,8	7,7	7,7	7,8	6,7	7,7	7,7	7,6	6,6	7,6	6,5	6,6	7,6 7	7,7 5	5,5	6,6	7,7	7,6	7,7			7,7	6,7	6,5
N7			S/B	5,5	5,5	5,5	5,5	5,5	6,7	6,8	8,8	7,6	6,7	6,6	6,7	8,7	6,6	7,6	7,7	5,7	5,6	7,7	7,8	7,7	7,7	6,7	6,6	7,6	7,6	7,7	7,7	7,7 6	6,6 7	7,7	5,5	8,7	7,7	7,6	7,7	7,7	6,5	5,5	5,5
84			1	5,5	6,5	5,5	5,6	6,7	5,5	5,5	5,6	6,7	7,7	6,6	7,7	7,7	6,6	7,7	6,7	7,8	5,5	8,6	6,6	6,7	6,5	8,7	7,7	7,6	7,7	7,7	7,6	5,5 6	5,5 7	7,7	5,6	6,5	6,6	6,6	6,5	6,6	6.6	6,5	5.6
N9				5,5	6,6	5,5	5,5	5,5	5,6	6,6	6,6	6,5	6,6	5,6	7,7	8,7	5,6	6,7	6,7	7,6	5,6	5,6	7,7	5,6	5,5	6,6	7,7	6,6	7,6	6,5	6,6	6,7 6	6,6 6	5,6	7,6	7,7	6,6	7,6	7,6	7,7	5,6	5,5	5.5
N10				5,5	6,5	5,5	4,5	5,5	5,5	5,5	7,6	7,6	6,7	5,6	5,5	7,6	5,6	6,7	6,6	6,6	6,6	6,6	6,7	5,5	6,6	6,7	6,6	7,7	5,6	6,7	6,7	5,5 6	6,6 6	5,7	6,6	5,5	6,6	6,6	6,6	5,5	5,5	7,6	5,5
N11	1			S/B	S/B	S/B	S/B[S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/8	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B S	B/B S	S/B :	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B
																							-	-		-	-				-	-	•			4 - 6 - 2	100	West of the	S 10 10 10 10 10 10 10 10 10 10 10 10 10				•

^{*} S/B = Survey Boundary

SUMMARY OF GAMMA RADIATION FIELD MEASUREMENTS FOR FORD, EARTH CITY RADIOLOGICAL SURVEY EARTH CITY, MISSOURI

NORTHWEST GRID

MICROREM/HOUR AT 1 METER, AND 1 CM ABOVE GROUND SURFACE

(E&W)	MO	W12	W25	W 50	₩60	W70	₩80	W 90	
(N&S)	**************************************		*******	*****	********** :	****		**********	1 ++ 1
S17	PHASE	SURVEY	LAGOON	DHACE	SURVEY	6,5	6,6	5,5	S/B
S16	ARI		LAGOON	ARI		5,5	7,7	6,6	S/B
S15	,	ī` l	LAGOON	,	r I	6,6	6,6	5,7	S/B
S14		1	LAGOON		}	6,7	5,5	6,6	S/B
S13	l		LAGOON)	6,6	6,5	5,5	S/B
S12		i	LAGOON			6,6	6,6	5,6	S/B
S11		1	LAGOON			5,5	7,7	5,5	S/B
S10		((LAGOON		i	5,5	6.6	5,5	S/B
S9		1	LAGOON		ì	5,5	6,6	6,7	S/B
\$8	i]	LAGOON			6,6	6,6	5,6	S/B
\$7			LAGOON]]	7.6	6,6	6,7	S/B
S6		i	LAGOON			6,7	6,6	6,6	S/B
S 5		ĺĺ	LAGOON		[[7,8	7.6	6.6	S/B
\$4		1 1	LAGOON		· 1	7,6	7,7	6,7	S/B
s3		}	LAGOON		}	5,6	7,7	5,6	S/B
S2			LAGOON			6,5	7,7	5,5	S/B
S1]	LAGOON		1	7,6	7,6	7,7	S/B
SO	_					5,6	6,5	6,7	S/B
MO	5,6	6,7		7,6	6,5	8,6	6,7	S/B	
N1	5,6	7,6	LAGOON	6,6	6,5	7,6	6,6	S/B	1
N2	5,5	7,7	LAGOON	7,7	7,7	7,7	6,7	S/B	1
N3	5,6	6,7	LAGOON	5,7	6,7	7,6	7,6	S/B]
N4	5,7	7,7	LAGOON		5,5	6,6	6,7	S/B	ļ
N5	6,6	6,8	LAGOON	6,5	6,5	6,5	7,8	S/B	ļ
N6	6,5	8,6	LAGOON	7,7	5,5	7,7	5,5	S/B	i
N7	6,6	6,6	LAGOON	7,7	6,6	6,8	6,6	S/B	
N8	6,5	7,8	LAGOON	6,6	6,7	7,6	5,6	S/B	l
N9	5,5	6,6	LAGOON	7,7	7,7	6,6	6,5	S/B	j
N10	6,7	8,7	LAGOON	7,7	6,5	7,7	5,6	S/B	1
N11	7,7	7,7	LAGOON	5,6	6,6	7,6	7,7	S/B	(
N12	6,7	7,7	LAGOON	5,5	7,8	5,5	7,8	S/B	1
N13	5,6	6,7	LAGOON	5,5	6,7	6,6	5,5	S/B	
N14	6,6	8,6	LAGOON	7,7	7,7	7,6	6,6	S/B	ļ
	S/B	\$/B		S/B	S/B	S/B	S/B		

IJ

SUMMARY OF GAMMA RADIATION FIELD MEASUREMENTS FOR FORD, EARTH CITY RADIOLOGICAL SURVEY EARTH CITY, MISSOURI

WESTERN GRID

MICROREM/HOUR AT 1 METER, AND 1 CM ABOVE GROUND SURFACE

(NES) NO 5,5 6,5 LAGOON 5,5 7,6 S/B N1 5,5 6,5 LAGOON 6,7 6,5 S/B N2 5,5 6,6 LAGOON 7,6 7,7 S/B N3 6,6 6,5 LAGOON 7,6 7,7 S/B N4 6,6 6,5 LAGOON 7,6 7,7 S/B N5 5,5 7,6 LAGOON 5,5 7,6 S/B N6 6,5 6,5 LAGOON 5,5 7,6 S/B N6 6,5 6,5 LAGOON 7,7 7,7 S/B N8 5,6 6,5 LAGOON 7,7 7,6 S/B N9 5,5 7,6 LAGOON 7,7 7,6 S/B N9 5,5 7,6 LAGOON 7,7 7,6 S/B N1 6,6 7,6 LAGOON 5,7 7,8 S/B N1 6,6 7,6 LAGOON 5,7 7,8 S/B N1 6,6 7,6 LAGOON 5,7 7,8 S/B N1 6,6 7,6 LAGOON 5,7 5,5 S/B N13 4,5 6,6 LAGOON 7,7 5,5 S/B N14 4,4 7,7 LAGOON 7,6 5,6 S/B N15 5,6 7,6 LAGOON 5,6 6,7 S/B N16 6,6 6,5 LAGOON 5,6 7,6 S/B N17 6,5 6,6 LAGOON 5,6 5,5 S/B N18 6,6 7,6 LAGOON 5,6 5,5 S/B N18 6,6 7,6 LAGOON 5,6 5,5 S/B N20 5,6 6,5 LAGOON 5,6 5,5 S/B N21 5,6 6,5 LAGOON 5,6 6,5 S/B N22 5,5 6,6 LAGOON 5,6 5,5 S/B N23 6,5 7,7 LAGOON 6,7 7,6 S/B N22 5,5 6,6 LAGOON 5,6 5,5 S/B N23 6,5 7,7 LAGOON 5,6 6,7 S/B N24 5,6 8,7 LAGOON 5,6 6,7 S/B N25 5,5 S,5 LAGOON 5,5 6,7 S/B N26 5,5 S,5 LAGOON 5,5 6,7 S/B N27 5,5 7,7 LAGOON 5,5 6,7 S/B N28 4,4 6,6 LAGOON 7,6 S,6 S/B N31 5,5 6,6 LAGOON 7,6 S,5 S/B N33 5,5 7,6 LAGOON 7,6 S,5 S/B N34 5,4 6,6 LAGOON 7,6 T,7 S/B N35 4,4 7,7 LAGOON 8,7 T,7 S/B N39 5,4 6,6 LAGOON 7,7 S,5 S/B N30 6,5 6,6 LAGOON 7,6 T,7 S/B N31 5,5 6,6 LAGOON 7,6 T,6 S/B N33 5,5 7,6 LAGOON 7,6 S,7 S/B N34 5,4 6,6 LAGOON 7,6 T,6 S/B N35 4,4 7,7 LAGOON 8,6 6,7 S/B N36 4,4 6,6 LAGOON 7,7 S,5 S/B N37 5,5 7,6 LAGOON 7,6 S,5 S/B N38 4,4 5,5 LAGOON 7,6 S,5 S/B N39 5,4 6,6 LAGOON 7,7 S,5 S/B N30 6,5 6,6 LAGOON 7,7 S,5 S/B N31 5,5 6,6 LAGOON 7,7 S,5 S/B N33 5,5 7,6 LAGOON 7,7 S,5 S/B N34 5,4 6,6 LAGOON 7,7 S,5 S/B N35 6,6 LAGOON 7,7 S,5 S/B N36 6,6 CAGOON 7,7 S,5 S/B N37 5,5 LAGOON 7,7 S,5 S/B N38 4,4 5,5 LAGOON 7,7 S,5 S/B N39 5,4 6,6 LAGOON 7,7 S,5 S/B N30 6,5 6,6 LAGOON 7,	(E&W)	WO	W15	W25	W36	W46	****
NO 5,5 6,5 LAGOON 5,5 7,6 S/S N1 5,5 6,5 LAGOON 5,5 7,6 S/S N2 25,5 6,6 LAGOON 5,5 6,7 S/S N3 6,6 6,5 LAGOON 7,6 7,7 S/S N4 6,6 6,6 LAGOON 5,5 5,5 S/S N5 5,5 7,6 LAGOON 5,5 7,6 S/S N6 6,5 6,5 LAGOON 5,5 7,6 S/S N6 6,5 6,5 LAGOON 5,5 7,6 S/S N7 5,5 5,5 LAGOON 7,7 7,6 S/S N8 5,6 6,5 LAGOON 7,7 7,6 S/S N9 5,5 7,6 LAGOON 7,7 7,6 S/S N9 5,5 7,6 LAGOON 5,6 6,7 S/S N10 5,5 6,6 LAGOON 7,7 7,8 S/S N110 5,5 6,6 LAGOON 7,7 7,8 S/S N110 5,5 6,6 LAGOON 7,7 7,8 S/S N111 6,6 7,6 LAGOON 7,7 7,8 S/S N12 5,5 6,6 LAGOON 7,7 5,5 S/S N13 4,5 6,6 LAGOON 7,6 5,6 S/S N14 4,4 7,7 LAGOON 6,6 6,5 S/S N15 6,6 LAGOON 6,6 6,5 S/S N16 6,6 7,6 LAGOON 5,5 5,5 S/S N17 6,5 6,6 LAGOON 5,5 5,5 S/S N18 6,6 7,6 LAGOON 5,6 7,6 S/S N19 6,6 8,7 LAGOON 5,5 5,5 S/S N20 5,6 6,5 LAGOON 5,6 7,6 S/S N21 5,6 6,5 LAGOON 5,6 7,6 S/S N22 5,5 6,6 LAGOON 5,6 7,6 S/S N23 6,5 7,7 LAGOON 5,6 7,8 S/S N23 6,5 7,7 LAGOON 5,6 7,8 S/S N23 6,5 7,7 LAGOON 5,5 6,5 S/S N24 5,6 8,7 LAGOON 5,5 6,5 S/S N25 5,5 LAGOON 5,5 7,7 S/S N28 4,4 6,6 LAGOON 5,5 7,7 S/S N28 4,4 7,7 LAGOON 5,5 7,7 S/S N33 5,5 6,6 LAGOON 7,6 7,6 S/S N31 5,5 6,6 LAGOON 7,6 7,6 S/S N33 5,5 7,6 LAGOON 7,6 7,7 S/S N34 5,4 7,7 LAGOON 6,6 7,7 S/S N35 4,4 7,7 LAGOON 6,6 7,7 S/S N39 5,4 6,6 LAGOON 7,6 5,5 S/S N30 6,5 5,5 LAGOON 7,6 5,5 S/S N31 5,5 7,6 LAGOON 7,6 7,6 S/S N33 5,5 7,6 LAGOON 7,6 7,6 S/S N34 5,5 5,5 LAGOON 7,6 7,6 S/S N35 4,4 7,7 LAGOON 6,6 6,7 S/S N36 4,4 7,7 LAGOON 6,6 6,7 S/S N37 5,5 S/S LAGOON 7,6 5,5 S/S N44 5,5 5,5 LAGOON 7,7 5,5 S/S N59 5,5 6,6 LAGOON 7,7 5,5 S/S N50 5,5 6,6 LAGOON 7,7 7,6 S/S N50 5,5 6,6 LAGOON 7,7 7,6 S/S N50 5,5 6,6 LAGO	(11867)		!	1			l c/p
N1			4 6	LACCON		7.	•
N2 5,5 6,6 LAGOON 7,6 7,7 8/8 N4 6,6 6,5 LAGOON 7,6 7,7 8/8 N5 5,5 7,6 LAGOON 6,5 5,5 5,5 8/8 N5 5,5 7,6 LAGOON 5,5 7,6 S/8 N7 5,5 5,5 LAGOON 7,7 7,6 S/8 N8 5,6 6,5 LAGOON 7,7 7,6 S/8 N9 5,5 7,6 LAGOON 7,7 7,6 S/8 N9 5,5 7,6 LAGOON 7,7 7,6 S/8 N10 5,5 6,6 LAGOON 5,7 7,8 S/8 N11 6,6 7,6 LAGOON 6,7 6,7 S/8 N11 6,6 7,6 LAGOON 6,7 6,7 S/8 N11 6,6 7,6 LAGOON 6,7 6,7 S/8 N11 6,6 7,6 LAGOON 7,6 5,5 S/8 N11 6,6 7,6 LAGOON 5,6 5,5 S/8 N11 6,6 7,6 LAGOON 5,6 5,5 S/8 N11 6,6 6,5 LAGOON 5,6 6,5 S/8 N11 6,6 6,5 LAGOON 7,6 5,5 S/8 N11 6,6 6,5 LAGOON 7,6 5,5 S/8 N12 5,6 6,5 LAGOON 5,6 6,5 S/8 N12 5,6 6,5 LAGOON 5,5 6,7 S/8 N12 5,6 6,5 LAGOON 5,5 6,7 S/8 N12 5,6 6,6 LAGOON 5,5 6,6 S/8 N12 5,5 5,5 LAGOON 5,5 7,7 S/8 N12 5,5 5,5 LAGOON 5,5 7,7 S/8 N12 5,5 5,5 LAGOON 7,6 7,6 S/8 N13 5,5 6,6 LAGOON 7,6 7,6 5,5 S/8 N13 5,5 6,6 LAGOON 7,7 6,5		•	4 5				1
N3 6,6 6,5 LAGOON 7,6 7,7 S/B N4 6,6 6,6 LAGOON 5,5 5,5 S/B N5 5,5 7,6 LAGOON 5,5 7,6 S/B N6 6,5 6,5 LAGOON 5,5 7,6 S/B N7 5,5 5,5 LAGOON 7,7 7,6 S/B N8 5,6 6,5 LAGOON 7,7 7,6 S/B N9 5,5 7,6 LAGOON 5,6 6,7 S/B N10 5,5 6,6 LAGOON 5,7 7,8 S/B N11 6,6 7,6 LAGOON 5,7 7,8 S/B N11 6,6 7,6 LAGOON 7,7 5,5 S/B N13 4,5 6,6 LAGOON 7,7 5,5 S/B N14 4,4 7,7 LAGOON 5,6 5,5 S/B N16 6,6 7,6 LAGOON 7,6 5,6 S/B N17 6,5 6,6 LAGOON 5,6 7,6 S/B N17 6,5 6,6 LAGOON 5,6 7,6 S/B N19 6,6 8,7 LAGOON 5,6 7,6 S/B N19 6,6 8,7 LAGOON 5,6 7,6 S/B N20 5,6 6,5 LAGOON 7,6 5,5 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 5,6 7,6 S/B N22 5,5 6,6 LAGOON 5,6 7,6 S/B N23 6,5 7,7 LAGOON 5,6 7,6 S/B N24 5,6 8,7 LAGOON 5,5 6,6 S/B N25 5,5 S,5 LAGOON 5,5 7,6 S/B N26 6,5 6,6 LAGOON 5,5 7,6 S/B N27 5,5 7,7 LAGOON 5,5 7,6 S/B N27 5,5 7,7 LAGOON 5,5 7,6 S/B N29 4,5 5,5 LAGOON 5,5 7,6 S/B N30 6,5 6,6 LAGOON 5,5 7,6 S/B N31 5,5 6,6 LAGOON 5,5 7,6 S/B N33 5,5 7,6 LAGOON 6,6 7,5 S/B N33 5,5 7,6 LAGOON 6,6 7,5 S/B N33 5,5 7,6 LAGOON 6,6 7,5 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N34 4,4 6,6 LAGOON 7,6 7,6 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 7,7 5,5 S/B N38 4,4 5,5 LAGOON 6,6 7,7 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N30 6,5 6,6 LAGOON 7,7 5,5 S/B N31 5,6 7,6 LAGOON 7,7 5,5 S/B N32 4,5 5,5 LAGOON 6,6 6,7 S/S N33 5,5 7,6 LAGOON 7,7 5,5 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 6,7 S/S N36 5,5 LAGOON 7,7 5,5 S/B N37 5,5 6,6 LAGOON 7,7 5,5 S/B N38 4,4 5,5 LAGOON 6,6 6,7 S/S N39 5,5 6,6 LAGOON 7,7 5,5 S/B N30 6,5 6,6 LAGOON 7,7 5,5 S/B N31 5,6 6,5 LAGOON 7,7 5,5 S/B N32 6,5 6,5 LAGOON 7,7 5,5 S/B N34 5,5 6,5 LAGOON 7,7 5,5 S/B N35 6,6 CLAGOON 7,7 5,5 S/B N36 6,5 CLAGOON 7,7 5,5 S/B N37 5,5 CLAGOON 7,7 5,5 S/B N38 6,5 7,5 LAGOON 7,7 5,5 S/B N39 6,5 6,5 LAGOON 7,7 5,5 S/B N30 6,5 6,5 LAGOON 7,7 5,5 S/B N30 6,5 6,5 LAGOON 7,7 5,5 S/B N30 6,5 6,5 LAGOON 7,7 7,6 5,5 S/B N30 6,5 6,5 LAGOON 7,7 7,6 5,5 S/B N55 5,5 6,6 LAGOON 7,7 7,6 5,5 S/B N55 5,5						0,3	l
N4 6,6 6,6 6,6 LAGOON 6,5 5,5 S/B N5 5,5 7,6 LAGOON 5,5 7,6 S/B N6 6,5 6,5 LAGOON 5,5 7,6 S/B N7 5,5 5,5 LAGOON 7,7 7,6 S/B N8 5,6 6,5 LAGOON 7,7 7,6 S/B N8 5,6 6,5 LAGOON 7,7 7,6 S/B N10 5,5 6,6 LAGOON 5,7 7,8 S/B N11 6,6 7,6 LAGOON 5,7 7,8 S/B N11 6,6 7,6 LAGOON 5,7 7,8 S/B N12 5,5 6,6 LAGOON 5,7 7,8 S/B N13 4,5 6,6 LAGOON 7,7 5,5 S/B N14 4,4 7,7 LAGOON 5,6 5,5 S/B N15 5,6 7,6 LAGOON 5,6 5,5 S/B N16 6,6 6,5 LAGOON 5,6 5,5 S/B N17 6,5 6,6 LAGOON 5,6 5,5 S/B N19 6,6 8,7 LAGOON 5,5 6,5 S/B N19 6,6 8,7 LAGOON 5,5 5,5 S/B N20 5,6 6,5 LAGOON 5,6 7,6 S/B N21 5,6 6,5 LAGOON 5,6 7,6 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 5,5 LAGOON 5,5 6,7 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,7 S/B N25 5,5 5,5 LAGOON 5,5 6,7 S/B N26 6,5 6,6 LAGOON 5,5 6,7 S/B N27 4,5 5,5 LAGOON 7,6 5,6 S/B N28 4,4 6,6 LAGOON 7,6 5,6 S/B N29 4,5 5,5 LAGOON 7,6 5,6 S/B N30 6,5 6,6 LAGOON 7,6 5,5 S/B N30 6,5 6,6 LAGOON 7,6 5,5 S/B N31 5,5 7,6 LAGOON 7,6 5,5 S/B N32 5,6 7,6 LAGOON 7,6 5,5 S/B N33 5,5 7,6 LAGOON 7,6 5,5 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 7,7 5,5 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 7,7 5,5 S/B N38 4,4 5,5 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N30 6,5 5,5 LAGOON 6,6 6,7 S/B N31 5,5 5,5 LAGOON 7,7 5,5 S/B N32 6,5 6,5 LAGOON 7,7 5,5 S/B N33 5,5 5,5 LAGOON 7,7 5,5 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 5,5 6,6 LAGOON 7,7 5,5 S/B N36 6,6 CAGOON 7,7 5,5 S/B N37 5,5 5,5 LAGOON 7,7 5,5 S/B N38 4,4 7,7 LAGOON 7,7 5,5 S/B N39 5,5 6,6 LAGOON 7,7 5,5 S/B N30 6,5 6,5 LAGOON 7,7 5,5 S/B N31 5,5 6,5 LAGOON 7,7 5,5 S/B N32 6,5 6,5 LAGOON 7,7 5,5 S/B N35 5,5 6,6 LAGOON 7,7 5,5 S/B N36 5,5 6,5 LAGOON 7,7 5,5 S/B N37 6,5 S,5 LAGOON 7,7 5,5 S/B N38 6,5 6,5 LAGOON 7,7 5,5 S/B N39 6,				! !			•
N5				: :			
N6 6,5 6,5 LAGOON 5,5 8,7 S/8 N7 5,5 5,5 LAGOON 7,7 7,6 S/8 N9 5,5 7,6 LAGOON 5,6 6,7 S/8 N10 5,5 6,6 LAGOON 5,6 6,7 S/8 N11 6,6 7,6 LAGOON 5,7 7,8 S/8 N11 6,6 7,6 LAGOON 6,7 6,7 S/8 N11 5,5 6,6 LAGOON 7,7 5,5 S/8 N11 4,5 6,6 LAGOON 7,7 5,5 S/8 N12 5,5 6,6 LAGOON 7,6 5,6 S/8 N14 4,4 7,7 LAGOON 5,6 7,6 S/8 N15 5,6 7,6 LAGOON 5,6 7,6 S/8 N16 6,6 6,5 LAGOON 5,6 7,6 S/8 N17 6,5 6,6 LAGOON 5,6 7,6 S/8 N18 6,6 7,6 LAGOON 5,6 7,6 S/8 N18 6,6 7,6 LAGOON 7,6 5,5 S/8 N20 5,6 6,5 LAGOON 7,6 5,5 S/8 N21 5,6 6,5 LAGOON 7,6 5,5 S/8 N22 5,5 6,6 LAGOON 5,6 7,8 S/8 N23 6,5 7,7 LAGOON 5,6 7,8 S/8 N24 5,6 8,7 LAGOON 5,5 6,7 S/8 N25 5,5 5,5 LAGOON 5,5 7,7 S/8 N26 6,5 LAGOON 5,5 7,7 S/8 N27 5,5 7,7 LAGOON 5,5 7,6 S/8 N27 5,5 7,7 LAGOON 5,5 7,6 S/8 N28 4,4 6,6 LAGOON 7,6 7,7 S/8 N29 4,5 5,5 LAGOON 7,6 7,7 S/8 N29 4,5 5,5 LAGOON 7,6 7,7 S/8 N29 4,5 5,5 LAGOON 7,6 7,7 S/8 N33 5,5 7,6 LAGOON 7,6 7,7 S/8 N33 5,5 7,6 LAGOON 7,6 7,7 S/8 N33 5,5 7,6 LAGOON 6,6 7,7 S/8 N33 5,5 7,6 LAGOON 7,6 5,5 S/8 N34 4,4 6,6 LAGOON 7,6 7,7 S/8 N35 4,4 7,7 LAGOON 6,6 7,7 S/8 N36 4,4 6,6 LAGOON 7,7 5,5 S/8 N37 5,5 7,6 LAGOON 6,6 7,7 S/8 N38 4,4 5,5 LAGOON 6,6 7,7 S/8 N39 5,4 6,6 LAGOON 7,7 5,5 S/8 N39 5,5 6,5 LAGOON 7,7 6,5 S/8						7,3	
N7 5,5 5,5 LAGOON 7,7 7,6 S/B N8 5,6 6,5 LAGOON 7,8 7,7 S/S N8 N9 5,5 7,6 LAGOON 5,6 6,7 S/B N10 5,5 6,6 LAGOON 5,6 6,7 S/B N11 6,6 7,6 LAGOON 5,7 7,8 S/S N11 6,6 7,6 LAGOON 6,7 6,7 S/S N12 5,5 6,6 LAGOON 7,6 5,6 S/S N13 4,5 6,6 LAGOON 7,6 5,6 S/S N14 4,4 7,7 LAGOON 5,6 5,5 S/S N15 5,6 7,6 LAGOON 5,6 7,6 S/S N16 6,6 6,5 LAGOON 5,6 7,6 S/S N17 6,5 6,6 LAGOON 7,6 5,5 S/S N18 6,6 7,6 LAGOON 5,5 6,5 S/S N19 6,6 8,7 LAGOON 5,5 5,5 S/S N20 5,6 6,5 LAGOON 5,6 7,8 S/S N21 5,6 6,5 LAGOON 5,6 7,8 S/S N22 5,5 6,6 LAGOON 5,6 7,8 S/S N23 6,5 7,7 LAGOON 5,6 7,8 S/S N24 5,6 8,7 LAGOON 5,5 6,7 S/S N25 5,5 5,5 LAGOON 5,5 6,6 S/S N26 6,5 LAGOON 5,5 6,6 S/S N27 5,5 7,7 LAGOON 5,5 7,7 S/S N28 4,4 6,6 LAGOON 5,5 7,7 S/S N28 4,4 6,6 LAGOON 7,6 7,6 S/S N29 4,5 5,5 LAGOON 7,6 7,6 S/S N30 6,5 6,6 LAGOON 7,6 7,6 S/S N31 5,5 6,6 LAGOON 7,6 7,6 S/S N33 5,5 7,6 LAGOON 7,6 7,6 S/S N33 5,5 7,6 LAGOON 7,6 7,6 S/S N33 5,5 7,6 LAGOON 6,6 7,7 S/S N34 5,4 6,6 LAGOON 7,6 7,6 S/S N35 4,4 7,7 LAGOON 6,6 7,7 S/S N36 6,5 LAGOON 7,6 7,6 S/S N37 5,5 LAGOON 6,6 6,7 S/S N38 4,4 7,7 LAGOON 6,6 7,7 S/S N38 4,4 7,7 LAGOON 6,6 6,7 S/S N39 5,4 6,6 LAGOON 7,6 7,6 S/S N39 5,4 6,6 LAGOON 7,6 7,6 S/S N39 5,4 6,6 LAGOON 7,6 7,5 S/S N39 5,4 6,6 LAGOON 7,6 7,5 S/S N39 5,4 6,6 LAGOON 7,7 5,5 S/S N39 5,4 6,6 LAGOON 7,6 7,6 S/S N39 5,4 6,6 LAGOON 7,6 7,6 S/S N39 5,4 6,6 LAGOON 7,7 5,5 S/S N39 5,4 6,6 LAGOON 7,6 7,6 S/S N39 5,4 6,6 LAGOON 7,7 5,5 S/S N48 5,5 LAGOON 6,5 6,6 S/S N49 5,5 LAGOON 6,6 6,6 S/S N49 5,5 LAGOON 7,7 5,5 S/S N49 5,5 LAGOON 6,6 6,6 S/S N50 6,5 LAGOON 7,7 5,5 S/S N50 6,5 LAGOON 7,7 5,5 S/S			/ ,O				1
N8							
N9 5,5 7,6 LAGOON 5,6 6,7 S/B N110 5,5 6,6 LAGOON 5,7 7,8 S/B N111 5,5 6,6 LAGOON 7,7 5,5 S/B N112 5,5 6,6 LAGOON 7,7 5,5 S/B N113 4,5 6,6 LAGOON 7,6 5,6 S/B N14 4,4 7,7 LAGOON 5,6 5,5 S/B N16 6,6 6,5 LAGOON 5,6 7,6 S/B N17 6,5 6,6 LAGOON 5,6 7,6 S/B N18 6,6 7,6 LAGOON 5,6 7,6 S/B N19 6,6 8,7 LAGOON 5,6 7,5 S/B N20 5,6 6,5 LAGOON 7,6 5,5 S/B N21 5,6 6,5 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 5,5 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,7 S/B N25 5,5 5,5 LAGOON 5,5 7,7 S/B N26 6,5 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 5,5 7,7 S/B N28 4,4 6,6 LAGOON 5,5 7,7 S/B N30 6,5 6,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,6 S/B N33 5,5 7,6 LAGOON 6,6 7,6 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N38 4,4 5,5 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,6 5,5 S/B N44 5,5 6,6 LAGOON 7,6 5,5 S/B N45 5,5 LAGOON 6,5 7,7 S/B N48 5,5 6,6 LAGOON 7,6 5,5 S/B N49 5,5 5,5 LAGOON 6,6 6,7 S/B N40 6,5 S/B N41 5,6 5,5 LAGOON 6,5 5,5 S/B N42 4,5 5,5 LAGOON 6,6 6,7 S/B N43 4,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N45 6,5 LAGOON 7,7 5,5 S/B N48 5,5 6,6 LAGOON 7,7 5,5 S/B N49 5,5 6,6 LAGOON 7,7 5,5 S/B N49 5,5 6,6 LAGOON 7,7 5,5 S/B N40 6,5 6,5 LAGOON 7,7 5,5 S/B N41 6,5 6,5 LAGOON 7,7 5,5 S/B N42 6,5 6,5 LAGOON 7,7 5,5 S/B N43 6,5 6,5 LAGOON 7,7 5,5 S/B N44 5,5 6,5 LAGOON 7,7 5,5 S/B N55 6,6 LAGOON 7,7 5,5 S/B				•			1
N10		5,0					
N11 6,6 7,6 LAGOON 6,7 6,7 5,5 5,8 N12 5,5 6,6 LAGOON 7,7 5,5 5,8 N14 4,4 7,7 LAGOON 5,6 5,5 5,8 N15 5,6 7,6 LAGOON 5,6 5,5 5,8 N16 6,6 6,5 LAGOON 5,6 6,5 5,5 5,8 N16 6,6 6,5 LAGOON 5,6 6,5 5,5 5,8 N16 6,6 6,5 LAGOON 5,6 7,6 5,5 5,8 N18 6,6 7,6 LAGOON 7,6 5,5 5,8 N19 6,6 8,7 LAGOON 7,6 5,5 5,8 N19 6,6 8,7 LAGOON 7,6 5,6 5,8 N19 6,6 6,5 LAGOON 7,6 5,6 5,8 N19 6,6 6,5 LAGOON 5,6 7,8 5,8 N19 6,6 6,5 LAGOON 5,6 7,8 5,8 N19 6,6 6,5 LAGOON 5,6 6,6 5,8 N19 6,5 6,6 LAGOON 5,6 6,6 5,8 N19 6,5 6,6 LAGOON 5,5 6,6 5,8 N19 6,5 6,6 LAGOON 7,6 7,7 5,8 N19 6,5 6,6 LAGOON 7,6 7,7 5,8 N19 6,5 6,6 LAGOON 7,6				•			
N12 5,5 6,6 LAGOON 7,7 5,5 S/B N13 4,5 6,6 LAGOON 7,6 5,6 5,5 S/B N14 4,5 6,6 LAGOON 7,6 5,5 5,5 S/B N15 5,6 7,6 LAGOON 5,6 6,5 S/B N16 6,6 6,5 LAGOON 5,6 7,6 S/B N17 6,5 6,6 LAGOON 5,5 6,5 S/B N17 6,5 6,6 LAGOON 5,5 6,5 S/B N19 6,6 8,7 LAGOON 7,6 5,5 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,5 6,7 S/B N22 5,5 6,6 LAGOON 5,5 6,7 S/B N23 5,5 5,5 LAGOON 5,5 6,6 S/B N24 5,5 8,7 LAGOON 5,5 7,6 S/B N25 5,5 5,5 LAGOON 5,5 7,7 S/B N26 6,5 6,6 LAGOON 5,5 7,7 S/B N26 6,5 6,6 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 8,7 6,6 S/B N29 4,5 5,5 LAGOON 7,6 7,7 S/B N30 6,5 6,6 LAGOON 7,6 7,7 S/B N31 5,5 6,6 LAGOON 7,6 6,7 S/B N32 5,6 7,6 LAGOON 7,6 6,7 S/B N32 5,6 7,6 LAGOON 7,6 6,7 S/B N33 5,5 7,6 LAGOON 7,6 6,7 S/B N33 5,5 7,6 LAGOON 7,6 6,6 7,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 6,7 S/B N35 4,4 7,7 LAGOON 6,6 6,7 S/B N37 5,5 7,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 7,6 6,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 6,5 S/B N44 5,5 6,5 LAGOON 7,6 6,5 S/B N44 5,5 6,5 LAGOON 7,6 6,5 S/B N44 5,5 6,6 LAGOON 7,7 6,5 S/B N44 5,5 6,5 LAGOON 7,7 6,5 S/B							L
N13				,			
M14		•		L I			
N15 5,6 7,6 LAGOON 6,6 6,5 S/B N16 6,6 6,5 LAGOON 5,6 7,6 S/B N17 6,5 6,6 LAGOON 5,5 6,5 S/B N19 6,6 8,7 LAGOON 7,6 5,5 S/B N19 6,6 8,7 LAGOON 7,6 5,5 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 6,6 S/B N23 6,5 7,7 LAGOON 5,5 6,6 S/B N23 6,5 7,7 LAGOON 5,5 6,6 S/B N24 5,6 8,7 LAGOON 5,5 6,6 S/B N25 5,5 5,5 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 5,5 7,7 S/B N29 4,5 5,5 LAGOON 7,6 7,7 S/B N30 6,5 6,6 LAGOON 7,6 7,6 S/B N30 6,5 6,6 LAGOON 7,6 7,6 S/B N31 5,5 6,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 7,6 7,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 6,7 S/B N35 4,4 7,7 LAGOON 6,6 6,7 S/B N35 4,4 7,7 LAGOON 6,6 6,7 S/B N36 4,4 5,5 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N44 5,5 6,5 LAGOON 7,7 5,5 S/B N45 5,5 6,6 LAGOON 7,7 5,5 S/B N44 5,5 6,5 LAGOON 7,7 6,5 S/B N44 5,5 6,5 LAGOON 7,7 6,5 S/B N44 5,5 6,5 LAGOON 7,7 6,5 S/B N45 5,5 6,5 LAGOON 7,7 6,5 S/B N46 4,5 6,5 LAGOON 7,7 6,5 S/B N46 4,5 6,5 LAGOON 7,7 6,5 S/B N49 6,5 6,5 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 5,5 S/B N50 5,5 6,6 LAG			0,0	:			
N16 6,6 6,5 LAGOON 5,6 7,6 S/B N17 6,5 6,6 LAGOON 7,6 5,5 S/B N18 6,6 7,6 LAGOON 7,6 5,5 S/B N19 6,6 8,7 LAGOON 7,6 5,5 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 6,6 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,7 S/B N25 5,5 5,5 LAGOON 5,5 7,7 S/B N26 6,5 6,6 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 5,5 7,7 S/B N28 4,4 6,6 LAGOON 5,5 7,7 S/B N30 6,5 6,6 LAGOON 7,6 7,7 S/B N31 5,5 6,6 LAGOON 7,6 7,7 S/B N31 5,5 6,6 LAGOON 7,6 7,7 S/B N32 5,6 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N34 5,4 6,6 LAGOON 7,6 7,7 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 5,5 LAGOON 6,6 7,7 S/B N37 5,5 7,6 LAGOON 6,6 7,7 S/B N38 4,4 5,5 LAGOON 6,6 7,7 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N40 6,6 7,6 LAGOON 7,7 5,5 S/B N41 5,5 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 6,6 6,7 S/B N43 4,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N45 5,5 6,5 LAGOON 7,6 7,6 S/B N46 5,5 6,5 LAGOON 7,6 7,6 S/B N47 5,5 6,5 LAGOON 7,7 5,5 S/B N48 5,5 6,7 LAGOON 6,5 6,6 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N49 6,5 6,6 LAGOON 7,7 5,5 S/B N49 6,5 6,6 LAGOON 7,7 5,5 S/B N49 6,5 6,6 LAGOON 7,7 5,5 S/B N49 6,5 6,5 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 5,5 S/B N51 6,6 5,5 LAGOON 7,7 6,5 S/B N52 6,5 5,5 LAGOON 7,7 5,5 S/B N53 6,5 5,5 LAGOON 7,7 6,6 S/B N51 6,6 5,5 LAGOON 7,7 6,6 S/B N52 6,5 5,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,7 6,6 S/B N54 5,4 7,7 LAGOON 7,7 7,6 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B N50 5,5 6,5 LAGOON 7,7 6,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 5,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B			4,(•
N17 6,5 6,6 LAGOON 5,5 6,5 S/B N18 6,6 7,6 LAGOON 7,6 5,5 S/B N19 6,6 8,7 LAGOON 6,7 5,5 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,7 S/B N25 5,5 5,5 LAGOON 5,5 7,6 S/B N26 6,5 6,6 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 5,5 7,6 S/B N28 4,4 6,6 LAGOON 5,5 7,7 S/B N29 4,5 5,5 LAGOON 7,6 7,7 S/B N30 6,5 6,6 LAGOON 7,6 7,7 S/B N31 5,5 6,6 LAGOON 7,6 7,7 S/B N32 5,6 7,6 LAGOON 6,6 7,6 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 7,7 S/B N38 4,4 5,5 LAGOON 6,6 7,7 S/B N39 5,4 6,6 LAGOON 6,6 7,7 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N40 6,6 7,6 LAGOON 6,7 5,5 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 6,6 5,7 S/B N43 4,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 5,5 LAGOON 6,6 5,7 S/B N45 5,5 6,6 LAGOON 7,6 5,5 S/B N47 5,5 6,6 LAGOON 7,6 5,5 S/B N40 6,6 7,6 LAGOON 7,6 5,5 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 6,6 6,7 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N45 5,5 6,6 LAGOON 7,7 7,6 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N48 5,5 6,7 LAGOON 7,7 7,6 S/B N49 6,5 6,6 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 5,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 7,6 S/B N54 5,4 7,7 LAGOON 7,7 7,6 S/B N55 5,5 6,6 LAGOON 7,7 7,6 S/B							1
N18 6,6 7,6 LAGOON 7,6 5,5 S/B N19 6,6 8,7 LAGOON 7,6 5,5 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 7,6 S/B N25 5,5 5,5 LAGOON 5,5 7,6 S/B N26 6,5 6,6 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 5,5 7,7 S/B N28 4,4 6,6 LAGOON 7,6 7,7 S/B N30 6,5 6,6 LAGOON 7,6 7,7 S/B N31 5,5 6,6 LAGOON 7,6 7,7 S/B N32 5,6 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N34 5,4 6,6 LAGOON 7,6 7,7 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 7,7 S/B N38 4,4 5,5 LAGOON 6,6 7,7 S/B N39 5,4 6,6 LAGOON 6,6 7,7 S/B N39 5,4 6,6 LAGOON 6,6 7,7 S/B N40 6,6 7,6 LAGOON 6,6 7,7 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 6,6 5,7 S/B N43 4,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N45 5,5 6,6 LAGOON 7,7 5,6 S/B N47 5,5 6,6 LAGOON 7,6 5,5 S/B N47 5,5 6,6 LAGOON 7,6 5,5 S/B N47 5,5 6,6 LAGOON 7,6 5,5 S/B N47 5,5 6,6 LAGOON 7,6 7,6 S/B N49 6,5 6,6 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 S/S LAGOON 7,7 7,6 S/B N52 6,5 S,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N54 5,4 7,7 LAGOON 7,7 7,6 S/B N55 5,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 S/B N52 6,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N54 5,4 7,7 LAGOON 7,7 7,6 S/B N55 5,5 LAGOON 7,6 7,6 S/B N55 5,5 LAGOON 7,7 7,6 S/B N56 5,5 LAGOON 7,7 7,6 S/B N57 6,5 LAGOON 7,7 7,6 S/B N58 6,5 S,5 LAGOON 7,7 7,6 S/B N59 5,5 6,6 LAGOON 7,7 7,7 5,5 S/B N59 5,5 6,6 LAGOON 7,7 7,6 S/B					2,6		1
N19 6,6 8,7 LAGOON 6,7 5,5 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 6,6 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,6 S/B N25 5,5 5,5 LAGOON 5,5 6,6 S/B N26 6,5 6,6 LAGOON 5,5 6,6 S/B N27 5,5 7,7 LAGOON 5,5 6,6 S/B N28 4,4 6,6 LAGOON 7,6 7,7 S/B N30 6,5 6,6 LAGOON 7,6 7,7 S/B N31 5,5 6,6 LAGOON 7,6 7,7 S/B N32 5,6 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N34 5,4 6,6 LAGOON 7,6 7,7 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 7,7 S/B N38 4,4 7,7 LAGOON 6,6 7,7 S/B N38 4,4 5,5 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,6 5,5 S/B N40 6,6 7,6 LAGOON 6,6 6,7 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 6,6 6,7 S/B N43 4,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 6,6 LAGOON 7,6 7,6 S/B N45 5,5 LAGOON 6,6 6,7 S/B N40 6,6 7,6 LAGOON 7,7 5,5 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 6,6 6,7 S/B N43 4,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N45 5,5 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 7,7 7,6 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 LAGOON 7,7 7,6 S/B N53 6,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B N50 5,5 6,6 LAGOON 7,7 5,5 S/B N51 6,6 S,5 LAGOON 7,7 5,5 S/B N52 6,5 LAGOON 7,7 5,5 S/B N53 6,5 S,5 LAGOON 7,7 5,5 S/B N53 6,5 S,5 LAGOON 7,7 5,5 S/B N54 5,4 7,7 LAGOON 5,5 5,6 S/B							1
N20							
M21	1	0,0	0,7	1			r .
N22			0,2	1			
N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 7,6 S/B N25 5,5 5,5 LAGOON 5,5 6,6 S/B N26 6,5 6,6 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 8,7 6,6 S/B N28 4,4 6,6 LAGOON 7,6 7,7 S/B N29 4,5 5,5 LAGOON 6,6 7,6 S/B N30 6,5 6,6 LAGOON 7,6 7,7 S/B N31 5,5 6,6 LAGOON 7,6 7,7 S/B N32 5,6 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 6,6 6,7 S/B N40 6,6 7,6 LAGOON 6,6 6,7 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 6,6 6,7 S/B N43 4,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 7,6 7,6 S/B N48 5,5 6,7 LAGOON 6,5 6,6 S/B N49 6,5 6,6 LAGOON 7,7 7,6 S/B N49 6,5 6,6 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 5,5 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B							
N24				1 1	2,0		1
N25 5,5 5,5 LAGOON 5,5 6,6 S/B N26 6,5 6,6 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 8,7 6,6 S/B N28 4,4 6,6 LAGOON 7,6 7,7 S/B N29 4,5 5,5 LAGOON 6,6 7,6 S/B N30 6,5 6,6 LAGOON 7,6 7,6 S/B N31 5,5 6,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 6,6 6,7 S/B N40 6,6 7,6 LAGOON 6,6 6,7 S/B N41 5,6 5,5 LAGOON 6,6 6,6 S/B N42 4,5 5,5 LAGOON 6,6 6,6 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N44 5,5 6,6 LAGOON 7,6 7,6 S/B N44 5,5 6,5 LAGOON 6,5 6,6 S/B N44 5,5 6,6 LAGOON 7,6 7,6 S/B N44 5,5 6,6 LAGOON 7,6 7,6 S/B N45 5,5 6,5 LAGOON 6,5 6,6 S/B N49 6,5 6,5 LAGOON 7,7 7,6 S/B N49 6,5 6,6 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N54 5,4 7,7 LAGOON 7,6 7,6 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B N55 5,5 S/B N55 5,5 S/B N55 5,5 S/B N55 5,5 S/B							3
N26 6,5 6,6 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 8,7 6,6 S/B N28 4,4 6,6 LAGOON 7,6 7,7 S/B N29 4,5 5,5 LAGOON 6,6 7,6 S/B N30 6,5 6,6 LAGOON 7,6 6,7 S/B N31 5,5 6,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 7,7 S/B N38 4,4 5,5 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 6,7 5,5 S/B N40 6,6 7,6 LAGOON 7,7 5,5 S/B N41 5,6 5,5 LAGOON 6,6 S/B N42 4,5 5,5 LAGOON 6,6 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N45 5,5 6,6 LAGOON 7,6 5,5 S/B N46 4,5 6,7 LAGOON 6,6 6,7 S/B N47 5,5 6,6 LAGOON 7,6 5,5 S/B N48 5,5 6,7 LAGOON 6,5 6,6 S/B N49 6,5 6,6 LAGOON 7,6 7,6 S/B N49 6,5 6,6 LAGOON 7,7 7,6 S/B N49 6,5 6,6 LAGOON 7,7 7,6 S/B N49 6,5 6,6 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B							
N27 5,5 7,7 LAGOON 8,7 6,6 S/8 N28 4,4 6,6 LAGOON 7,6 7,7 S/8 N29 4,5 5,5 LAGOON 6,6 7,6 S/8 N30 6,5 6,6 LAGOON 7,6 6,7 S/8 N31 5,5 6,6 LAGOON 7,6 7,6 S/8 N32 5,6 7,6 LAGOON 6,6 6,7 S/8 N33 5,5 7,6 LAGOON 6,6 6,7 S/8 N34 5,4 6,6 LAGOON 7,7 5,5 S/8 N35 4,4 7,7 LAGOON 6,6 7,7 S/8 N35 4,4 7,7 LAGOON 6,6 7,7 S/8 N37 5,5 7,6 LAGOON 6,6 7,7 S/8 N38 4,4 5,5 LAGOON 6,6 6,7 S/8 N39 5,4 6,6 LAGOON 6,6 6,7 S/8 N40 6,6 7,6 LAGOON 7,7 5,6 S/8 N41 5,6 5,5 LAGOON 6,6 6,6 S/8 N41 5,6 5,5 LAGOON 6,6 6,6 S/8 N42 4,5 5,5 LAGOON 6,6 6,6 S/8 N44 5,5 6,5 LAGOON 7,6 5,5 S/8 N44 5,5 6,5 LAGOON 7,6 7,6 S/8 N44 5,5 6,5 LAGOON 7,6 7,6 S/8 N44 5,5 6,6 LAGOON 7,6 7,6 S/8 N44 5,5 6,6 LAGOON 7,6 7,6 S/8 N44 5,5 6,5 LAGOON 7,6 7,6 S/8 N45 5,5 6,5 LAGOON 7,7 6,5 S/8 N48 5,5 6,5 LAGOON 6,5 7,7 S/8 N49 6,5 6,6 LAGOON 7,7 7,6 S/8 N50 5,5 6,5 LAGOON 7,7 7,6 S/8 N51 6,6 5,5 LAGOON 7,7 7,6 S/8 N52 6,5 LAGOON 7,7 7,6 S/8 N53 6,5 5,5 LAGOON 7,7 7,6 S/8 N53 6,5 5,5 LAGOON 7,7 5,5 S/8 N54 5,4 7,7 LAGOON 7,7 5,5 S/8 N54 5,4 7,7 LAGOON 7,7 5,5 S/8 N54 5,4 7,7 LAGOON 7,6 7,6 S/8 N55 5,5 6,6 LAGOON 7,7 5,5 S/8 N55 5,5 6,6 LAGOON 7,6 7,6 5,5 S/8 N55 5,5 6,6 LAGOON 7,7 5,5 S/8 N55 5,5 5,5 S/8 N55 5,5 5,5 S/8 N55 5,5 5,5					2,2	0,0	I
N28				1 - !			I .
N29 4,5 5,5 LAGOON 6,6 7,6 S/B N30 6,5 6,6 LAGOON 7,6 6,7 S/B N31 5,5 6,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,6 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 7,6 7,6 S/B N48 5,5 6,6 LAGOON 7,6 7,6 S/B N49 6,5 6,6 LAGOON 6,5 6,6 S/B N49 6,5 6,6 LAGOON 7,7 5,6 S/B N49 6,5 6,6 LAGOON 6,7 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B				: :			
N30 6,5 6,6 LAGOON 7,6 6,7 S/B N31 5,5 6,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 6,6 7,7 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,6 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N44 5,5 6,6 LAGOON 7,6 7,6 S/B N45 5,5 6,6 LAGOON 6,5 6,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 7,7 S/B N48 5,5 6,6 LAGOON 7,7 S/B N49 6,5 6,6 LAGOON 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 5,5 S/B N53 6,5 5,5 LAGOON 7,7 5,5 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B					7,6	7,7	
N31 5,5 6,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,6 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 7,6 7,6 S/B N48 5,5 6,6 LAGOON 7,6 7,6 S/B N49 6,5 6,6 LAGOON 6,5 6,6 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N49 6,5 6,6 LAGOON 6,5 6,6 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 6,5 S/B N51 6,6 S,5 LAGOON 7,7 6,5 S/B N52 6,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N53 6,5 S,5 LAGOON 7,7 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B							
N32				1	7,6	6,7	
N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,7 5,5 S/B N39 5,4 6,6 LAGOON 8,6 6,7 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 7,7 5,6 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N44 5,5 6,6 LAGOON 7,6 7,6 S/B N45 5,5 6,6 LAGOON 6,5 6,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N48 5,5 6,6 LAGOON 6,7 7,7 5,8 N49 6,5 6,6 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 5,5 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B N55 5,5 S/B N55 S/B				•			l .
N34							
N35				I 1			1
N36				1			I
N37				1			1
N38							1 '
N39 5,4 6,6 LAGOON 8,6 6,7 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 6,6 6,6 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,8 5,5 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 6,5 7,7 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 6,5 7,7 S/B N50 5,5 6,5 LAGOON 6,5 6,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 5,5 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B							3
N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 6,6 6,6 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 6,7 6,5 S/B N48 5,5 6,7 LAGOON 7,7 6,5 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B							S/B
N41							1
N42							1
N43							1
N44							\$/8
N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 6,5 7,7 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B		4,5		1			S/B
N46				LAGOON		5,5	
N47 5,5 6,6 LAGOON 6.7 6,5 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				LAGOON		7,6	S/B
N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 6.5 6,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				LAGOON			S/B
N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 6.5 6,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				LAGOON			S/B
N50 5,5 6,5 LAGOON 6.5 6,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				LAGOON			
N50 5,5 6,5 LAGOON 6.5 6,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				LAGOON			S/B
N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				LAGOON		6,6	
N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				LAGOON			S/B
N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B		6,5		LAGOON		6,6	S/B
N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				LAGOON			3
			7,7	LAGOON			S/B
S/B S/B S/B S/B	N55	5,5	6,6		5,5	5,6	S/B
		S/B	S/B	S/B	S/B	S/B	

Table 2
Volumes & Preservatives
Soil & Sediment Samples

Parameters	No.	Size	Type	Preserv
TPH	1	100 ml	glass	none
Semivolatiles Pesticides Herbicides	1	500 ml	glass	none
Metals Cyanide	1	200 ml	polyethylene	none
Radiologic	1	500 gram	plastic bag	none

Table 3
Organic & Inorganic Data Summary
Soil Samples

Parameter	Units	BKG	COMP1	COMP2
TPH	mg/kg	ND	ND	ND
TPH - Misc	mg/kg	14.9	5.1	5.1
Semivolatiles				,
Benzoic Acid	ug/kg	ND	ND	30
2-Methylnaphthalene	ug/kg	ND	ND	10
Phenanthrene	ug/kg	ND	ND	30
Di-n-butylphthalate	ug/kg	ND	ND	50
Fluoranthrene	ug/kg	מא	30	50
Pyrene	ug/kg	ND	30	30
Butylbenzylphthalate	ug/kg	ND	ND	ND
Bis(2-Ethylhexyl)phthalate	ug/kg	ND	ND	ND
Pesticides/PCBs	ug/kg	ND	ND	ND
Herbicides	ug/kg	ND	ND	ND
Metals				
Arsenic	mg/kg	5.8	5.89	7.41
Lead	mg/kg	17.4	13.6	15.9
Mercury	mg/kg	ND	ND	ND
Selenium	mg/kg	ND	ND	ND
Thallium	mg/kg	ND	ND	ND
Antimony	mg/kg	6.9	ND	7.4
Beryllium	mg/kg	ND	ND	ND
Cadmium	mg/kg	1.1	ND	ND
Chromium	mg/kg	14.5	18.1	15.5
Copper	mg/kg	24.0	22.8	25.0
Nickel	mg/kg	18.0	18.3	19.2
Silver	mg/kg	ND	ND	ND
Zinc	mg/kg	61.6	62.4	57.4
Cyanide	ug/kg	ND	ND	ND

CONTROL OF THE CONTROL OF

Table 4A Radiologic Data Summary Unbiased Soil Samples

Parameter	Units	BKG	UB1	UB2	UB3	UB4	UB5	UB6
Туре		Background	investigative	investigative	investigative	investigative	investigative	investigative
Depth		0-6"	0-6"	0-6"	0-6"	0-6"	0-6"	0-6"
Laboratory		110	110	110	170	ITC	110	170
Gross Alpha	pCi/g	33.0 +/- 11.4	23.6 +/- 9.9	26.0 +/- 10.1	25.8 +/- 10.1	20.0 +/- 8.5	18.3 +/- 8.3	27.5 +/- 9.9
Gross Beta	pCi/g	27.9 +/- 9.6	23.5 +/- 8.5	30.0 +/- 11.1	31.1 +/- 10.9	29.0 +/- 9.9	25.6 +/- 9.7	25.1 +/- 8.0
Uranium-234	pCi/g	1.1 +/- 0.3	1.3 +/- 0.3	1.2 +/- 0.3	0.9 +/- 0.2	1.0 +/- 0.2	1.3 +/- 0.3	1.2 +/- 0.3
Uranium 235/236	pCi/g	< 0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Uranium 238	pCi/g	1.1 +/- 0.3	1.0 +/- 0.2	1.2 +/- 0.3	0.9 +/- 0.2	0.7 +/- 0.2	1.0 +/- 0.2	1.2 +/- 0.3
Thorium 230	pCi/g	3.6 +/- 0.6	2.5 +/- 0.5	1.8 +/- 0.4	2.2 +/- 0.5	2.1 +/- 0.4	3.0 +/- 0.7	2.5 +/- 0.5
Thorium-232	pCi/g	1.5 +/- 0.3	1.0 +/- 0.3	1.2 +/- 0.3	1.2 +/- 0.3	1.1 +/- 0.3	1.6 +/- 0.4	1.2 +/- 0.3
Potassium-40	pCi/g	18.1 +/- 2.9	9.9 +/- 1.4	11.7 +/- 1.6	14.6 +/- 1.9	17.7 +/- 2.9	18.6 +/- 3.0	19.7 +/- 3.2
Cesium-137	pCi/g	< 0.2	0.3 +/- 0.05	0.3 +/- 0.06	0.2 +/- 0.06	<0.2	<0.2	0.2 +/- 0.05
Radium-226	pCi/g	1.1 +/- 0.1	1.0 +/- 0.1	1.2 +/- 0.1	1.2 +/- 0.1	1.1 +/- 0.1	1.1 +/- 0.1	1.2 +/- 0.1
Radium-228	pCi/g	1.3 +/- 0.2	1.1 +/- 0.1	1.2 +/- 0.2	1.2 +/- 0.2	1.4 +/- 0.2	1.6 +/- 0.2	1.5 +/- 0.2

Table 4B Radiologic Data Summary Area 81 Biased Soil Samples

Parameter	Units	BKG	B1A	B1A	B18	B1C	
Туре		Background	investigative	split of B1A	dupl. of B1A	investigative	 <u> </u>
Depth		0-6"	0-6"	0-64	0-6"	6-12"	<u> </u>
Laboratory		ITC	110	CEP	110	110	
Gross Alpha	pCi/g	33.0 +/- 11.4	1650 +/- 340	44.6 +/- 1.8	1980 +/- 400	1810 +/- 370	
Gross Beta	pCi/g	27.9 +/- 9.6	313 +/- 66	21.2 +/- 0.6	304 +/- 64	274 +/- 58	
Uranium-234	pCi/g	1.1 +/- 0.3	7.9 +/- 1.0	4.2 +/- 0.5	6.3 +/- 1.1	7.4 +/- 1.0	
Uranium 235/236	pCi/g	< 0.6	<0.6	0.6 +/- 0.2	<0.6	<0.6	
Uranium 238	pCi/g	1.1 +/- 0.3	6.9 +/- 0.9	1.6 +/- 0.3	6.3 +/- 1.1	7.0 +/- 1.0	
Thorium 230	pCi/g	3.6 +/- 0.6	1580 +/- 370	<0.2	1390 +/- 270	1430 +/- 360	
Thorium-232	pCi/g	1.5 +/- 0.3	5.1 +/- 1.6	1.0 +/- 0.2	4.1 +/- 1.1	6.7 +/- 2.2	
Potassium-40	pCi/g	18.1 +/- 2.9	12.4 +/- 2.2	11.1 +/- 1.4	6.8 +/- 1.5	11.6 +/- 2.0	
Cesium-137	pCi/g	< 0.2	<0.2	0.1 +/- 0.1	<0.2	0.3 +/- 0.1	
Radium-226	pCi/g	1.1 +/- 0.1	39.5 +/- 3.3	41.4 +/- 0.4	29.6 +/- 4.5	24.0 +/- 3.7	
Radium-228	pCi/g	1.3 +/- 0.2	1.0 +/- 0.3	<0.1	1.0 +/- 0.3	1.3 +/- 0.3	

Table 4C Radiologic Data Summary Area B2 Biased Soil Samples

Parameter	Units	BKG	B2A	BZA	828	B2C	
Туре		Background	investigative	split of B2A	dupl. of B2A	investigative	
Depth		0-6#	0-6"	0-6"	0-6"	6-12"	
Laboratory		ITC	110	CEP	110	110	
Gross Alpha	pCi/g	33.0 +/- 11.4	7810 +/- 1570	199 +/- 2.4	5560 +/ 1120	1080 +/- 220	
Gross Beta	pCi/g	27.9 +/- 9.6	969 +/- 197	34.5 +/- 0.5	776 +/- 159	149 +/- 35	
Uranium-234	pCi/g	1.1 +/- 0.3	18.0 +/- 2.4	14.4 +/- 0.8	11.3 +/- 1.5	2.0 +/- 0.3	 <u> </u>
Uranium 235/236	pCi/g	< 0.6	2.1 +/- 0.4	0.2 +/- 0.1	<0.6	0.7 +/- 0.2	 <u></u>
Uranium 238	pCi/g	1.1 +/- 0.3	11.4 +/- 1.6	2.4 +/- 0.3	6.5 +/- 0.9	2.1 +/- 0.4	
Thorium 230	pCi/g	3.6 +/- 0.6	3720 +/- 780	<0.2	2820 +/- 580	574 +/- 113	
Thorium-232	pCi/g	1.5 +/- 0.3	4.5 +/- 1.3	1.3 +/- 0.5	13.1 +/- 3.0	1.2 +/- 0.5	 <u> </u>
Potassium-40	pCi/g	18.1 +/- 2.9	9.4 +/- 1.8	9.2 +/- 3.3	9.2 +/- 1.7	9.5 +/- 1.6	
Cesium-137	pCi/g	< 0.2	<0.2	<0.1	· <0.2	<0.2	
Radium-226	pCi/g	1.1 +/- 0.1	15.1 +/- 1.9	132 +/- 8.0	59.3 +/- 4.7	9.9 +/- 1.6	
Radium-228	pCi/g	1.3 +/- 0.2	1.3 +/- 0.4	150 +/- 38	1.2 +/- 0.3	1.0 +/- 0.2	

Table 4D Radiologic Data Summary Composite Soil Samples

Parameter	Units	BKG	COMP1	COMP2				
Туре		Background	investigative	investigative				
Depth		0-6"	0-6"	0-64			 	
Laboratory		170	ITC	110				
Gross Alpha	pCi/g	33.0 +/- 11.4	15.0 +/- 7.1	18.4 +/- 8.2				
Gross Beta	pCi/g	27.9 +/- 9.6	25.5 +/- 10.1	21.8 +/- 9.8				
Uranium-234	pCi/g	1.1 +/- 0.3	1.0 +/- 0.3	1.0 +/- 0.2				
Uranium 235/236	pCi/g	< 0.6	<0.6	<0.6		<u> </u>		
Uranium 238	pCi/g	1.1 +/- 0.3	1.0 +/- 0.3	0.8 +/- 0.2	· 	<u> </u>		
Thorium 230	pCi/g	3.6 +/- 0.6	2.2 +/- 0.5	2.4 +/- 0.4		<u> </u>		
Thorium-232	pCi/g	1.5 +/- 0.3	1.3 +/- 0.3	1.2 +/- 0.3				
Potassium-40	pCi/g	18.1 +/- 2.9	10.1 +/- 1.4	18.2 +/- 2.9				
Cesium-137	pCi/g	< 0.2	<0.2	<0.2		<u> </u>		
Radium-226	pCi/g	1.1 +/- 0.1	1.1 +/- 0.1	1.2 +/- 0.1	····			
Radium-228	pCi/g	1.3 +/- 0.2	1.2 +/- 0.2	1.3 +/- 0.2				

Table 5 Organic & Inorganic Data Summary Sediment Samples

Parameter	Units	BKG	83	84
TPH	mg/kg	ND	ND	ND
TPH - Misc	mg/kg	14.9	12.0	6.3
semivolatiles				,
Benzoic Acid	ug/kg	ND	35	140
2-Methylnaphthalene	ug/kg	ND	ND	DM
Phenanthrene	ug/kg	ND	30	40
Di-n-butylphthalate	ug/kg	ND	10	100
Fluoranthrene	ug/kg	ND	40	ND
Pyrene	ug/kg	ND	50	30
Butylbenzylphthalate	ug/kg	ND	ND	50
Bis(2-Ethylhexyl)phthalate	ug/kg	ND	ND	190
Pesticides/PCBs	ug/kg	ND	ND	ND
Herbicides	ug/kg	ND	ND	ND
Metals				
Arsenic	mg/kg	5.8	2.12	5.6
Lead	mg/kg	17.4	12.4	17.8
Mercury	mg/kg	ND	ND	0.18
Selenium	mg/kg	ND	ND	ND
Thallium	mg/kg	ND	ND	ND
Antimony	mg/kg	6.9	ND	6.7
Beryllium	mg/kg	ND	ND	ND
Cadmium	mg/kg	1.1	ND	ND
Chromium	mg/kg	14.5	5.5	13.1
Copper	mg/kg	24.0	15.2	23.0
Nickel	mg/kg	18.0	9.7	16.3
Silver	mg/kg	ND	ND	ND
Zinc	mg/kg	61.6	32.8	56.8
Cyanide	ug/kg	ИД	ИД	ND

Table 6 Radiologic Data Summary Sediment Samples

Parameter	Units	BKG	S1	\$2	\$3	S4
Туре		Background	investigative	investigative	investigative	investigative
Depth		0-6"	0-6"	0-6"	0-6"	0-18"
Laboratory		170	1TC	ITC	ITC	170
Gross Alpha	pCi/g	33.0 +/- 11.4	32.1 +/- 11.8	17.4 +/- 7.7	23.2 +/- 9.1	219 +/- 50
Gross Beta	pC1/g	27.9 +/- 9.6	26.7 +/- 11.0	25.7 +/- 9.1	17.9 +/- 7.6	27.3 +/ 9.4
Uranium-234	pCi/g	1.1 +/- 0.3	1.0 +/- 0.3	1.0 +/- 0.3	0.7 +/- 0.2	1.1 +/ 0.3
Uranium 235/236	pCi/g	< 0.6	<0.6	<0.6	<0.6	<0.6
Uranium 238	pCi/g	1.1 +/- 0.3	0.9 +/- 0.2	1.1 +/- 0.3	0.8 +/- 0.2	0.6 +/- 0.2
Thorium 230	pCi/g	3.6 +/- 0.6	1.3 +/- 0.3	2.3 +/- 0.4	2.6 +/- 0.4	2.4 +/- 0.5
Thorium-232	pCi/g	1.5 +/- 0.3	1.0 +/- 0.3	1.2 +/- 0.3	0.7 +/- 0.2	1.1 +/- 0.3
Potassium-40	pCi/g	18.1 +/- 2.9	17.7 +/- 3.0	5.1 +/- 1.0	10.2 +/- 1.4	10.9 +/- 1.5
Cesium-137	pCi/g	< 0.2	<0.2	.07 +/03	<0.2	<0.2
Radium-226	pCi/g	1.1 +/- 0.1	1.2 +/- 0.2	1.2 +/- 0.1	0.8 +/- 0.1	1.2 +/- 0.1
Radium-228	pCi/g	1.3 +/- 0.2	1.2 +/- 0.3	1.3 +/- 0.2	0.6 +/- 0.1	1.3 +/- 0.2

TABLE 7

FORD (EARTH CITY), PHASE II PROPERTY EVALUATION DOWNHOLE GAMMA LOGGING RESULTS

(6"	DEPTH INTERVALS)	UNITS ¹	WELL MU-101	WELL MW-102	WELL HW-103	WELL MV-104	WELL NW-105	WELL MW-106	WELL NU-107
6	A	CHTS/MIN	3600	4000	4000	3900	3700	3800	3600
12	В (CHTS/MIN	4000	4200	4000	4200	3600	3800	4000
18	c {	CHTS/MIN	4000	4200	4000	4400	3800	3800	3600
24	D	CHTS/HIN	4000	4200	4000	4400	4000	4400	3800
30	Εį	CNTS/MIN	4200	4300	3200	4500	4000	4400	3800
36	F (CNTS/MIN	4000	4200	4000	4700	4000	4000	3600
42	G	CNTS/MIN	4000	4200	4000	4500	4000	4000	3800
48	н }	CNTS/MIN	3600	3900	4000	4000	4300	4000	3400
54	1	CNTS/MIN	3400	3700	4000	3300	4000	4000	3400
60	J	CNTS/MIN	4000	3800	4000	4000	3500	3200	3800
66	K	CHTS/MIN	4000	4000	4000	4000	3600	4200	3800
72	L	CNTS/MIN	3800	3700	4000	4300	3800	4400	4000
78	- н }	CHTS/MIN	3700	3700	4000	4300	3800	4400	4000
84	N ,	CNTS/MIN	3700	3700	4000	4300	3700	4400	4200
90	o }	CNTS/MIN	3500	3800	4000 -	4000	3800	4200	4000
96	P	CNTS/MIN	3600	3700	3100	4000	4000	4000	4200
102	a }	CNTS/MIN	3400	3700	3400	4000	4000	4200	4000
108	R	CNTS/MIN	3400	3700	4000	4000	4000	4000	WATER
114	s	CNTS/MIN	3200	3600	4000	3300	3300	4000	
120	т	CHTS/MIN	3500	3300	3600	3600	3600	WATER	
126	U (CHTS/MIN	3400	3200	3700	3900	3900	ĺ	
132	V (CNTS/MIN	3400	3000	3400	3900	3900	ĺ	
138	w (CNTS/MIN	3500	3000	3600	3700	3700		
144	× (CHTS/MIN	3600	3000	3600	3700	3700	Ì	
150	Y (CHTS/MIN	3400	3000	WATER	WATER	WATER		
156	Z	CNTS/MIN	3300	3000			i	į	
162	- AA	CNTS/MIN	WATER	3100			ł		
168	AB	CNTS/MIN		3100			1	i	
174	AC	CHTS/MIN		WATER				i	

Readings are in gross counts per minute without background subtracted.

Table 8 Volumes & Preservatives Water Samples

Parameters	No.	Size	Type	Preserv
VOAs	2_	40 ml	glass	HCl
Semivolatiles	1	2 liter	amber glass	none
Pesticides/PCBs	1	1 liter	amber glass	none
Herbicides	1	1 liter	amber glass	none
Metals	1	250 ml	polyethylene	HNO ₃
Cyanide	1	500 ml	polyethylene	NaOH
Radiologic (Filtered)	1	4 liter	plastic	HNO ₃
Radiologic (Unfiltered)	1	4 liter	plastic	HNO3

Table 9
Organic & Inorganic Data Summary
Water Samples

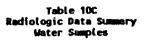

					Water Sam							
PARAMETER	UNITS	MW-101	MW-102	MW-103	MW-104	MW-105	MW-106	MW-107	MN-108	MW-109	MW-109D	MW-110
Туре		inv	inv	inv	inv	inv	inv	inv	102	102	102	rinse
Laboratory		sw	sw	su	su	SW	sw	SW	su	EEI	EEI	SU
VOCs (selected)		l 		 		ļ						<u> </u>
Methylene Chloride	ppb	18 B	16 B	26 B	1 JB	18 B	19 B	16 B	15 B	ND	ND	16 B
Acetone	ppb	5 J	ND	17 B	5 JB	6 J	43	3 J	ND	ND	ND	4 JB
1-1 Dichloroethane	pob	ND	3 J	ND	ND	ND	ND	ND	ND	6	ND	ND
1-1 Dichloroethene	ppb	ND	ND	ND	ND	ND	ND	ND	3 J	ND	ND	ND
Toluene	ppb	ND	ND	8	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene	ppb	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND
Xylene	ppb	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND
Semivolatiles (selected)] 					ļ <u>.</u>		
Di-ethylphthalate	ppb	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8 J
Bis(2-ethylhexyl)phthalate	ppb	ND	2 JB	ND	ND	2 ,	27	ND	ND	ND	14	ND
Chrysene	ppb	ND	1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pesticides/PCBs	ppb	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NO
Herbicides	ppb	ND	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND
Metals (selected)												<u></u>
Antimony	ppb	ND	ND	34,5	ND	ND	44.7	33.1	34.5	ND	ND	ND
Arsenic	ppb	ND	ND	ND	ND	ND	ND	ND	ND	3.1	2.5	ND
Copper	ppb	152	326	43	131	73	80	62	81	ND	ND	102
Mercury	ppb	ND	ND	ND	ND	ND	ND	ND	ND	0.48	ND	ND
Nickel	ppb	ND	13.8	ND	ND	ND	ND	10.9	14	ND	ND	ND
Selenium	ppb	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND	ND
Silver	ppb	ND	ND	ND	NO	ND	ND	ND	ND	1.1	ND	ND
Zinc	ppb	102	52.8	34.1	40.7	489	56.4	43	44.5	ND	ND	40.5
Cyanide	ppm	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

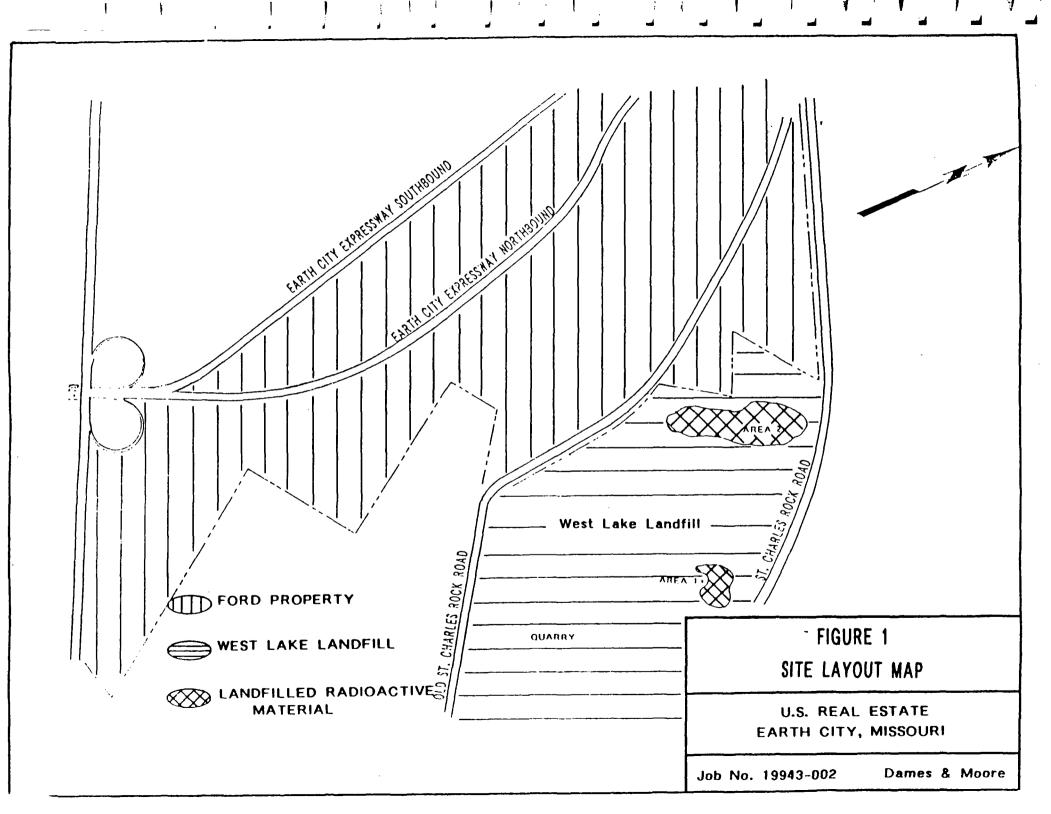
Table 10A Radiologic Data Summery Water Samples

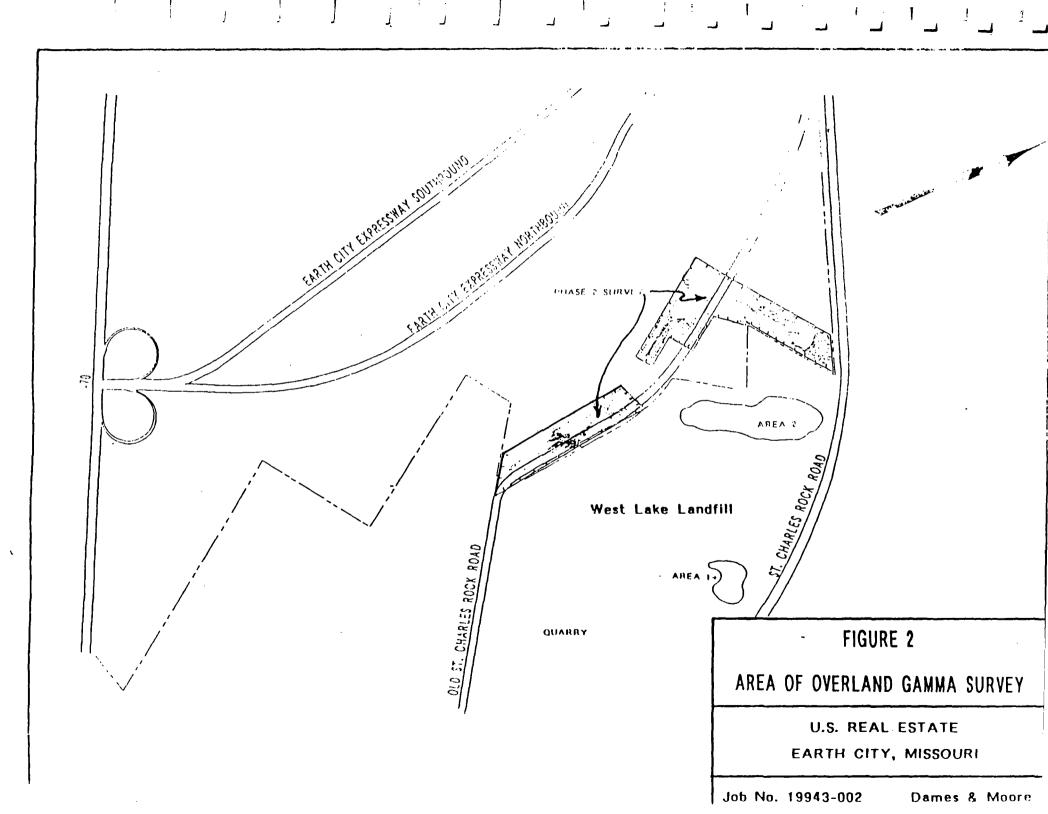
Parameter	Units	MV101-U	MW101-F	MW102-U	MW102-F	MW103-U	MW103-F
Туре		investigative	investigative	investigative	investigative	investigative	investigative
		Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
Laboratory		1TC	110	110	170	1TC	ITC
Gross Alpha	pCi/l	< 10.0	< 7.7	< 8.1	< 2.3	17.2 +/- 9.6	< 7.0
Gross Beta	pCi/l	24.1 +/- 8.4	9.5 +/- 6.3	7.1 +/- 5.5	< 8.4	23.4 +/- 10.1	<13.4
Uranium-234	pCi/l	9.1 +/- 1.8	1.3 +/- 0.3	1.4 +/- 0.4	2.4 +/- 0.6	1.3 +/- 0.2	5.1 +/- 0.9
Uranium 235/236	pCi/L	1.4 +/- 0.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Uranium 238	pCi/l	8.6 +/- 1.7	< 1.0	1.3 +/- 0.4	1.6 +/- 0.5	1.2 +/- 0.2	3.6 +/- 0.7
Thorium 230	pCi/i	1.0 +/- 0.4	< 1.0	< 1.0	< 1.0	1.2 +/- 0.5	1.6 +/- 0.5
Thorium-232	pC1/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Potassium-40	pCi/l	<130	<160	<140	<180	<150	<180
Cesium-137	pCi/l	< 20	< 20	< 20	< 20	< 20	< 20
Radium-226	pCi/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Radium-228	pCi/l	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0

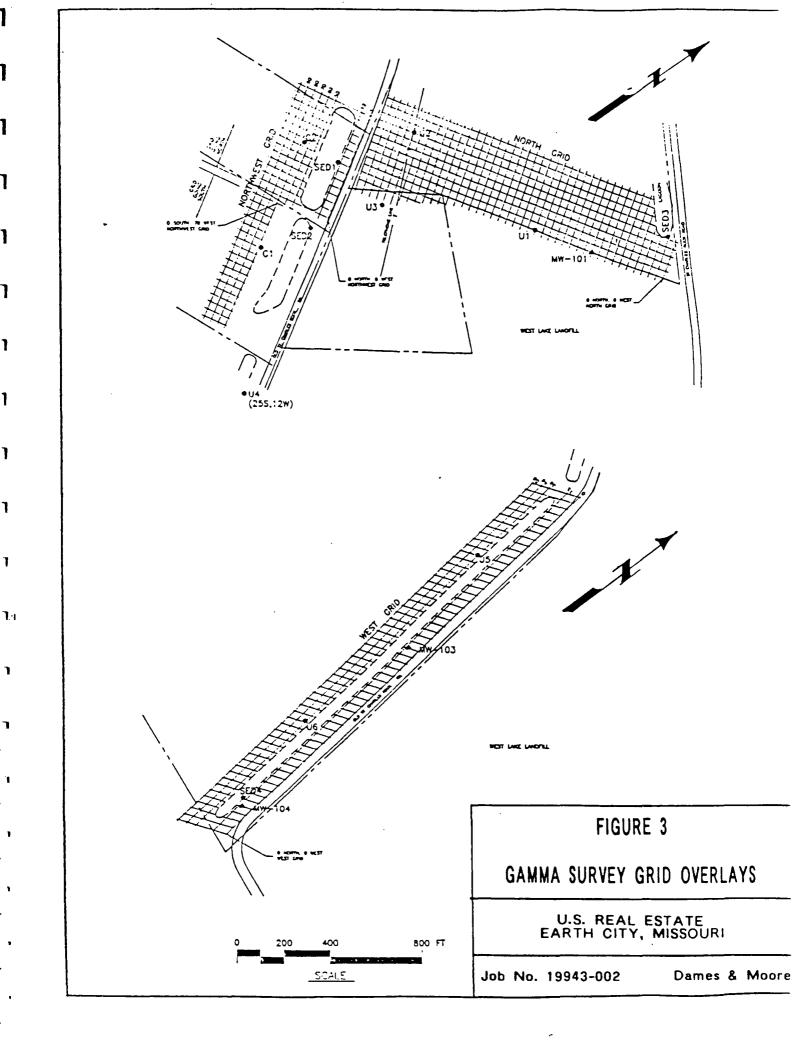
Table 108 Radiologic Data Summary Water Samples

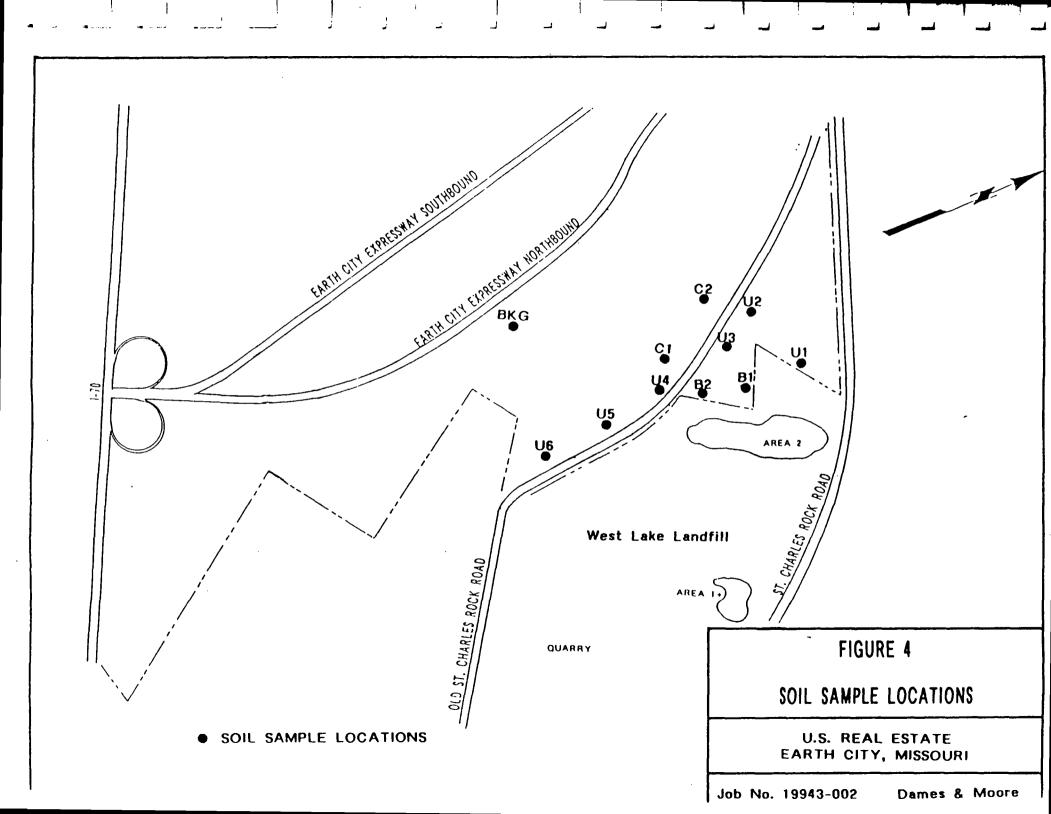
Parameter	Units	MV104-U	MW104-F	MW105-U	MW105-F	MW106-U	MW106-F
Туре		investigative	investigative	investigative	investigative	investigative	investigative
		Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
Laboratory		110	ITC	ITC	110	ITC	110
Gross Alpha	pCi/l	11.4 +/- 7.4	< 2.0	16.9 +/- 8.3	< 10.1	101 +/- 23	< 10.2
Gross Beta	pCi/l	18.7 +/- 7.4	< 8.3	14.5 +/- 9.1	7.32 +/- 5.6	29.5 +/- 12.2	< 16.0
Uranium-234	pCi/l	3.8 +/- 0.7	2.0 +/- 0.5	< 1.0	1.3 +/- 0.3	2.2 +/- 0.5	3.8 +/- 0.6
Uranium 235/236	pCi/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Uranium 238	pCi/l	2.7 +/- 0.6	1.1 +/- 0.4	< 1.0	< 1.0	1.4 +/- 0.4	2.7 +/- 0.5
Thorium 230	pCi/l	2.0 +/- 0.6	< 1.0	< 1.0	< 1.0	4.5 +/- 1.2	< 1.0
Thorium-232	pCI/l	1.5 +/- 0.6	< 1.0	< 1.0	× 1.0	6.1 +/- 1.5	< 1.0
Potassium-40	pCi/l	<140	104 +/- 60	145 +/- 74	<140	283 +/- 114	<140
Cesium-137	pCi/l	< 20	< 20	< 20	< 20	< 20	< 20
Radium-226	pCi/l	< 1.0	< 1.0	< 1.0	< 1.0	1.4 +/- 0.3	1.1 +/- 0.3
Radium-228	pCi/l	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0

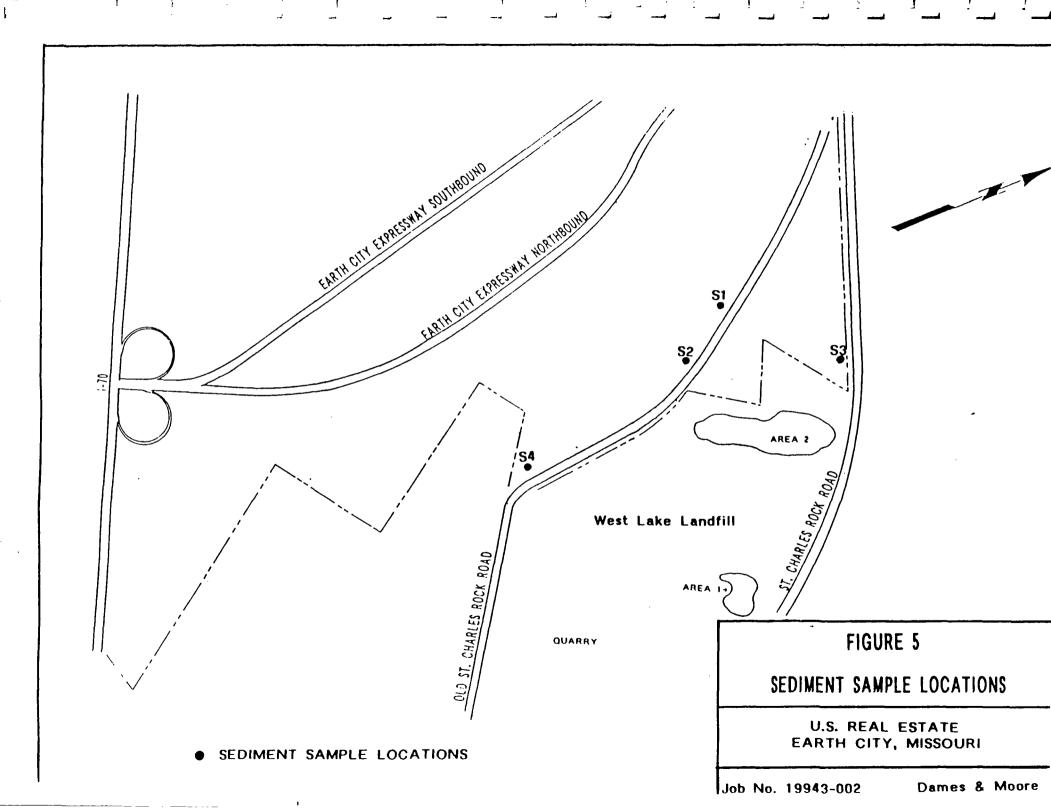
Parameter	Units	M#107-U	MV107-F	MW108-U	MW108-F	พน109-บ	MW109-F
Туре		investigative	investigative	dupl. MW102-U	dupl. MW102-F	split MW102-U	split MW102-F
		Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
Laboratory		170	110	110	110	CEP	CEP
Gross Alpha	pCi/l	202 +/- 36	< 10	< 7.5	< 10.6	< 2.0	< 2.0
Gross Beta	pCi/l	17.7 +/- 11.0	< 9.3	< 10.3	< 8.4	7 +/- 3	< 3
Uranium-234	pCi/l	< 1.0	1.6 +/- 0.4	2.2 +/- 0.5	3.6 +/- 0.6	< 0.6	< 0.6
Uranium 235/236	pCi/l	< 1.0	< 1.0	< 1.0	< 1.0	< 0.6	< 0.6
Uranium 238	pCi/l	< 1.0	1.2 +/- 0.3	1.7 +/- 0.4	2.9 +/- 0.5	< 0.6	< 0.6
Thorium 230	pCi/l	< 1.0	< 1.0	1.6 +/- 0.6	< 1.0	< 0.6	< 0.6
Thorium-232	pCf/l	< 1.0	< 1.0	< 1.0	< 1.0	< 0.6	< 0.6
Potassium-40	pCi/l	<180	<180	<190	<150	< 5	< 5
Cesium-137	pCi/l	< 20	< 20	< 20	< 20	11.0 +/- 0.8	< 2
Radium-226	pCi/l	< 1.0	< 1.0	< 1.0	< 1.0	1.5 +/- 1.0	< 0.6
Radium-228	pCi/l	< 3.0	< 3.0	< 3.0	< 3.0	< 1	< 1

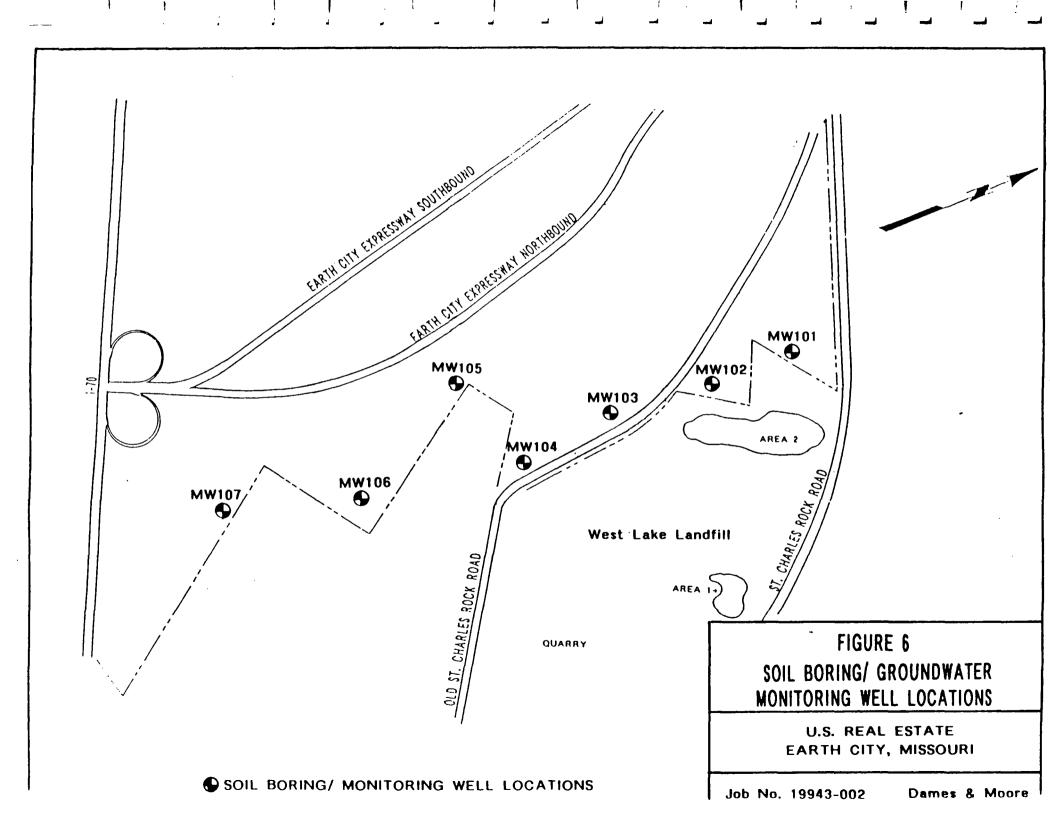

Table 100 Rediologic Data Summery Water Samples

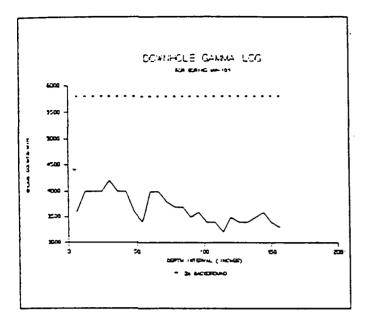

Parameter	Units	MW110-U	MV110-F		WAT		
Туре		rinse	rinse		soil rinse	L	
		Unfiltered	Filtered				
Laboratory		ITC	110		110	ļ	
Gross Alpha	pCi/L	< 1.0	< 1.0				
Gross Beta	pCi/L	< 4.0	< 4.0			<u> </u>	
Uranium-234	pCi/l	< 1.0	< 1.0		<u> </u>	<u> </u>	
Uranium 235/236	pCi/l	< 1.0	< 1.0			ļ	<u> </u>
Uranium 238	pCi/l	< 1.0	< 1.0				
Thorium 230	pCi/l	< 1.0	< 1.0				
Thorium-232	pCi/l	< 1.0	< 1.0				
Potassium-40	pCi/l	<100	<190	·			
Cesium-137	pCi/l	< 20	< 20				
Radium-226	pCi/l	< 1.0	< 1.0				
Radium-228	pCi/l	< 3.0	< 3.0			<u> </u>	i

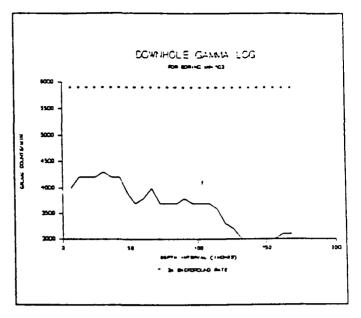

TABLE 11
SAMPLE REANALYSIS DATA

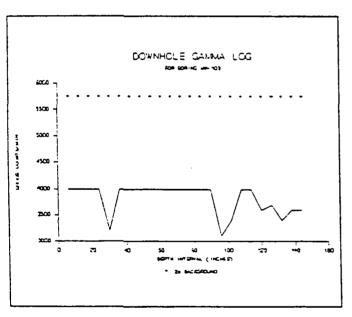

Sample ID	Туре	Parameter(s) Reanalyzed	Date	Results ± 2G (units)
S4	Sediment	Gross alpha	5/25/90	19.3 <u>+</u> 8.6 (pCi/g)
BlA	Soil	Gross alpha Gross beta Thorium-230	5/25/90 5/25/90 6/07/90	1140 ± 240 (pCi/g) 250 ± 53 (pCi/g) 1750 ± 360 (pCi/g)
B2A	Soil	Gross alpha Gross beta Thorium-230 Radium-226 Radium-228	5/25/90 5/25/90 6/07/90 5/25/90 5/25/90	4100 ± 830 (pCi/g) 627 ± 129 (pCi/g) 3530 ± 970 (pCi/g) 89.5 ± 4.7 (pCi/g) < 1.16 (pCi/g)
MW106-U	Groundwater	Gross alpha	5/25/90	307 <u>+</u> 133 (pCi/g)


D&M Job No. 19943-002-045 June 14, 1990









٦

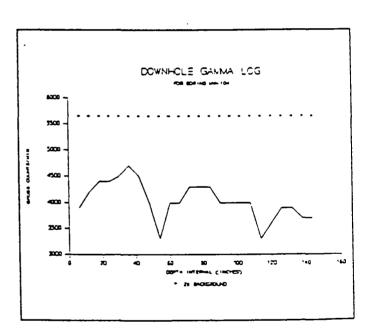

FIGURE 7-101

FIGURE 7-102

FIGURE 7-103

FIGURE 7-104

FIGURE 7

DOWNHOLE GAMMA RADIATION PLOTS

U.S. REAL ESTATE
EARTH CITY, MISSOURI

Job No. 19943-002

Dames & Moor

APPENDIX A Certificates of Calibration

·~-y

.

12345 KINSMAN ROAD, NEWBURY, OHIO 44065 (216) 564-2251 telex 980474

CERTIFICATE OF INSTRUMENT CALIBRATION

CUSTOMER:	DAMES & MOORE	. #	40C.40
COULDINEIR.	micro rem	, TF	A880N
INSTRUMENT	MODEL: SERIAL	#	

CALIBRATION DATA

	RANGE	EXPOSURE RATE	INST. READING	EXPOSURE RATE	INST. READING
-	X1000	160 mR/h	160	40 mR/h	40
	X100	16 mR/h	16	4 mR/h	4
}	X10	1.6 mR/h	1.6	400 uR/h	400
	X1	160 uR/h	160	40 uR/h	40
}	X0.1	16 uR/h	16		

THE Cs-137 1 Ci SOURCE USED FOR THIS CALIBRATION HAS A CERTIFICATE STATING ITS TRACEABILITY TO N.B.S. (N.I.S.T.) STANDARDS.

* INSTRUMENT CALIBRATED WITH A CS-137 GAMMA SOURCE USING A CONVERSION FACTOR OF 1 urem/h

1 uR/h

*ICRON CORPORATION

12345 KINSMAN ROAD, NEWBURY, OHIO 44065 (216) 564-2251 telex 980474

CERTIFICATE OF INSTRUMENT CALIBRATION

CUSTOMER:-	DAMES & MOORE	(7#	40040
CODIOPER:	micro rem		∡∓	A882N
INSTRUMENT	MODEL: SER	RIAL	#	

CALIBRATION DATA

RANGE	EXPOSURE RATE	INST. READING	EXPOSURE RATE	INST. READING
_ X1000	160 mR/h	160	40 mR/h	40
X100	16 mR/h	16	4 mR/h	3.9
X10	1.6 mR/h	1.6	400 uR/h	400
X1	160 uR/h	160	40 uR/h	40 .
X0.1	16 uR/h	16		

THE Cs-137 1 Ci SOURCE USED FOR THIS CALIBRATION HAS A CERTIFICATE STATING ITS TRACEABILITY TO N.B.S. (N.I.S.T.) STANDARDS.

INSTRUMENT CALIBRATED WITH A CS-137 GAMMA SOURCE USING A CONVERSION FACTOR OF 1 urem/h

1 uR/h

OTHER CALIBRATIONS AVAILABLE UPON REQUEST.

CALIBRATED BY: Shower C Lagran DATE: 1-18-90

APPENDIX B Chain-of-Custody Records 172 DAVID PUR 3670N 314-993-45-99

I TC

Sample	s Source	& Client	F	ORD US	S REI	AC ES	TATE		Flo	ld Personnel (S	lgnature	9)
Projec	1 Tille	GART		-177	•		Job No. 19	943-0	07			
Dató	.Tlmo	Samı I.D. İ	nla Vo. :	Sámple Type		. ol alners	Samplin	j Sllo		Remark	S	•
4/02		_51_		Sadiment.	1			·		7-6"		
		. 5 2		Sed					- 11	D-C	•	· .
		<u> </u>	•	Sed	1	<u> </u>	St. Cla R.	ck Rd		J-C	·	
		54		sed			SW End			6"		
		CI		Soil - COMP					ш	-6		•
		CZ		Soil comp					0	-c · ·		·,,
		UB-1		301			ON/18W					•
		UB-2	·	50:1			NT W37					
<u> </u>		UB-3		50:1			_			·		
-		UB-4		soil			12W/250			·····	·	·.
-		UB-5		50:1	. 1		440N /36			·		 -
		UB-6		50:1			170N/36	ω .				
				7		}						
-{-}		/_							<u> </u>	>		
<u> </u>										 		, 1 = : -
(Signa	lahed by ature) 27/	1 Data 4/12	Time 5:00	Received (Signatur		Time	Relinquished t (Signature)	Date	Time	Received byt (Signature)	Date	Time
Hnqul	lehed by ature)		Time	Received • (Signatur		Time	Relinquished b	yi Date	Time	Received by:	Date	Time
farRui	acai's)			· (orgnatur	e,		(Signature)			(Signature)		.
llivjul (Slgna	lahed by	Date	Timo	Received (Signature		Time	Relinquished b (Signature)	Date	Time	Received by: (Signature)	Date	Time

PUPINGT J, DAUID 314-993-4599

· · · · · · · · · · · · · · · · · · ·							01 0001001					
Sample	e Source	& Clien	1 Fc	PD US F	Peal Es.	1260			Flo	ld Personnel (S	ignature)
Projec	t Tille	Barth	Cit	ī	•		Job No. 19943	-00 Z				
Date	omlT.	Sam 1.D.	ple .	Sample Type	No. Conta		Sampling S	Slto		Remark	S	•
4/12		_B1-	Δ	501			Area 1			J-6		
		BI-E	3	50:1	/				0	6	• •	
		BI-C	•	50:1	<u> </u>	i			<u>6</u>	-12		
		B2-A		50.1			Arec 2		O	- C		
		B2-T	3.	suil	,				0	C		•
		Ba-C	;	50:1	/		J		6-1	12		٠.٠
		BKG		soil						17		
<u> </u>		WAT		water							•	
								_			/	
		<u> </u>	 						7		•	· .
			}		. \ .			· · · · · · · · ·	$-\parallel \downarrow$	· / / / / / / / / / / / / / / / / / / /		
		· 	1					•	$-\ \bot$			
 _			7.			\		·	_ _\			
					<u> </u>				<u>-</u> ∥		<u> </u>	
l_				[·		 		_			<i>,</i>
(Signa	taked by ature)	1/	Tima 5.00	Received (Signature	n)	Time	Relinquished by: (Signature)	Date .	Time	Received by: (Signature)	Date.	Time
	lahed by ature)	Date	Tima	Received (Signature		Time	Relinquished by:	Date	Time	Received by:	Date	Time
CarRui	arai's)			' (argumente	"		(Signature)			(Signature)		
	Ished by	Date	Timo	Received I (Signature		Time	Relinquinhed by: (Signature)	Data	Time	Received by: (Signature)	Date	Time
								1 1	- 1			

Dave Puringto 314-993-4599

50 Thurst

Sample Sour	ce & Cll	enl 7	ORD US	Roa	1 Es	ble			ld Personnel (Sl	gnature)
Project Tille	ENT	1 00		•		Job No. / 954	13-007	<u>ا</u> ک			
Dato .Tlm	S	implø D. No,	Sample		o. of taluers	Sampling S	Sito	- ·	Remark	S	
4/12	BK	G	Soi 1	3	***************************************				PH Semi V, Pest,	Hub, N	et: CA
		H	sed:m1	3			·		· /		· · · · · · · · · · · · · · · · · · ·
		3	sed: mil	3				_			·
		mpa	50:1	3				_ _			
	<u>Co</u>	PI	50:1	3			······································	_	J		·. ————
		·	_	-	·			_	· · · · · · · · · · · · · · · · · · ·	·	·.•
	_			-[1	·	_ -	,	 	- · · ·
	- /			-	-/-		·-··	-∥		··	·
	- -/			- <i>-</i>	/	- 			/	•	
	-Y		<u> </u>		•			-		· · · · · ·	
	<u> </u>		\			 	•		/		
								•			
											<i>,</i>
(Signature)	· 1 /		(Signatu		a Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time.
DIRIN	4/1	2 5:00					1.	•	-	·	
elinquished (Signature)	by: Da	e Tim	Received (Signatur		Time	Relinguished by t (Signsture)	Date	Time	Received by: (Signature)	Date	Time
elliquished (Signature)		e Time	Received (Signatur		Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time

191 Dave Purinton 314-993-4599

CEP

Samp	lo Sourco	& Client	F	ORD U	5 Rec	l 6	strte		Fle	ld Porsonnel (S	gnature)
Projec	ct Title	Earth	Ci	Ly - Phas	· II		Job No. 1974	3-002				
Dalo	emlT.	Samo		Y Sample Type	No. Conta		Sampling 5			Remark	S	
4/12		B/A		Soil_	/				c)-6 ^{''}	_	
4/12		BZA		soil	/				0)-G'. -G'	•	
							_					·.
						\						<u>.</u>
			/			$\overline{}$					······	
[· ·										
										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
									-		•	
	italied by lature)	1,1	Tima 5-00	Received (Signature		Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date .	Time
•	lehed by	Date	Time	Received 1 (Signature		Time	Relinquished by t (Signsture)	Date	Time	Received by: (Signature)	Vate	Time
	ilshed by	Date	Tima	Kecelved b		Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time

10/1

314-993-4549

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

ITTC

e Source	& Client							Fle	old Personnel (S	ignatur	e)
: Tille				•		Job No.					
.Tlme			Sample Type			Sampling	∵ j−ŜII o		Remarl	ks	•
19:15	nw 1	05U	water	1		4.25			Analyze for	Pera	ty
12:15	MW/	05F			· 	0					· .
11:00	MW 10	16K						∥	Dovid Do	colon	
11:00						_			Donoren	loure	
						_		_	Buffall	0,11	`
9:00	MWIC	77 F	<u> </u>			<u> </u>					
									····		
				ļ 		_					
				<u> </u>	· 	- 			· · · · · · · · · · · · · · · · · · ·		: _
	<u> </u>										
						- -	 				
											
								-: -			
					-,			_		.	
ished by ature)	Date	Time			Time	Relinquished b (Signature)	yi Date	Time	Received by: (Signature)	Date	Time
ished by	Date	Time		, i	Time	Relinquished b (Signature)	ys Date	Time	Received by: (Signature)	Date	Time
ished by	Date	Time		· ,	Time	Relinquished by (Signature)	Date	Time	Received by: (Signature)	Date	Time
	17118 .Time 12:15 12:15 11:00 9:00 9:00 1shed by ature) Ished by	I Tille Time Sam I.D. 13:15 MW/ 12:15 MW/ 11:00 MW/0 9:00 MW/0 9:00 MW/0 9:00 MW/0 1 shed by: Date I shed by: Date I shed by: Date	Time Sample I.D. No. 13:15 MW 105K 13:15 MW 105F 11:00 MW 106K 11:00 MW 106F 9:00 MW 107K 9:00 MW 107F Ished by: Date Time Ished by: Date Time	Time Sample Sample Type 10.15 MW 105U Water 12.15 MW 105F 11.00 MW 106U 11.00 MW 107U 9.00 MW 107F 9.00 MW 107F 1 shed by: Date Time Received (Signature) 1 shed by: Date Time Received (Signature)	Time Sample I.D. No. Sample Type Contained by: Date Time Received by: Date	Time Sample Sample Type Containers 13:15 MW 105U Water 1 13:15 MW 105F 11:00 MW 106F 11:00 MW 107U 11:00 MW 107F 12:15 MW 105F 13:15 MW 105F 14:100 MW 107F 15:15 MW 105F 15:15 MW 105H 15:15 MW 105H 15:15 MW 105H 15:15 MW 105H 15:15 MW 105F 15:15 MW 105H 15:15 MW 105F 15:15 MW 105H 15:15 MW 105F 15:15 MW 105F 15:15 MW 105F 15:15 MW 105H 15:15 MW 105F 15:15 MW 105H 15:15 MW 105H 15:15 MW 105H 15:15 MW 105F 15:15 MW 105F 15:15 MW 105H 15:15	I Tille Time Sample Sample Rootalners Sample Type Rootalners 10.15 MW 105W Water 1 425 10.15 MW 105F 11.00 MW 106W 11.00 MW 106F 12.00 MW 107 W 13.00 MW 107 W 14.00 MW 107 F 15.00 MW 108 F 16.00 MW 108 F 16.00 MW 108 F 17.00 MW 108 F 18.00	I Tille Time Sample Sample Containers Sample Type Co	I Tille Sample Sample No. of Containers Sample I.D. No. 10.15 Mw 105W water I yes for the Management of the Managemen	I Tille Time Sample I.D. No. Sample Type Containers Sample I.D. No. of Containers Sample I.D. No. of Containers Sample I.D. No. of Containers Sample I.D. No. of Containers Sample I.D. No. of Containers Sample I.D. No. of Containers Sample I.D. No. of Containers Sample I.D. No. of Containers Sample I.D. No. of Containers Is not to the container	Time Sample Sample No. of Sampling Sample No. of Sampling Site Remarks Time Sample I.D. No. No. of Sampling Site Remarks Time Sample I.D. No. No. of Sampling Site Remarks Time Sample I.D. No. No. of Sampling Site Remarks Time Sample I.D. No. No. of Sampling Site Remarks Time Sample I.D. No. No. of Sampling Site I.D. No. No. of No

Druid Durington 314. 793-4549

ITC Alla Bill Commois

		 			 				751-	Id Danas = = 1 (0	l	
Sampl	e Source	& Client	· +	ord		 			- 16	ld Personnel (S	ignature	iì ·
Projec	:I Tille	E	414	cita			Job No.					
Date	.Tlmø	Sam I.D.	plo	Sample Type		lo, of ntainers	Sampling S	Slto		Remark	(S	
4-12	9:00	MWIIC	, u	Wites		1			_ P	-diological	An.G	217
	9:00	MULL	OF_		_				- 11	Des diseus	sias ·	w/
	10:00	MWIO	•					·		Arn discus Devid Dool	2.	
	10:00	MW10	a E		-			· · · · · · · · · · · · · · · · · · ·	_	D-M, B	16:110	NY
	10:30	MW/0	8a			1				· ,		
		Music								• .		•
		MWIC										
		MWIC							_			-
		MWIC										
		nuic		$\overline{}$		L			_		•	
V					7				7			
1												
		$\overline{}$										
V		MU	OIF						$\overline{\cdot}$		•	
		mula										
	ished by ature)	Data	Time Sido	Received (Signatur		to Time	Relinquished by: (Signature)	Date	Time .	Received by: (Signature)	Date .	Time
•	lahed by	Date	Time	Received	• 1	c Time	Relinquished byt	Date	Time	Received by:	Date	Time
(SIgn	sture)			(Signatur	c)		(Sigunture)			(Signature)		
Rellingu	laticd by	Date	Time	Kacelved	by: Dai	c Time	Relinquinhed by:	Date	Time	Received by:	Date	Time
	sture)			(Signatur			(Signature)			(Signature)		
-		- 1			1	1.	·			~		•
				· · · · · · · · · · · · · · · · · · ·				1			1	

5/7- 795 4-79

David Povington

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

Ford Early City Sample Source & Client 19943-000 Joh No. Project Title Sample No. of Sample Date -Sampling-Site-Time Remarks Typo 1.D. No. 1 Containers 4-162 2:30 Water - 4000 VOA 1161 MW/01 · 2,0 Mace a-12 1 ode Nã 611 - 500 ml 111003 netel. - 250ml 2 -401R 11.01 17:15 MW/05 senivaletiles 1 cas 2-18 More - 500mc 10,011 ·2.52.11 11100> Relinquished byt Time Relinguished by: Date Time Dato Received by: Received by: Date Time Date Tlme (Signature) (Signature) (Signature) (Signature) 5.21 Relinguished by Received byt Date Tima Time Relinguished byt Date Received by: Date Date Time Time (Signature) (Signature) (Signature) (Signature) Relliquished by Date Timo Time Relinguished by: Received by: Date Time Received by: Dote Time (Signature) (Signature) (Signature) (Signature)

192

Sample	B Source	& Client	1						Fle	ld Personnel (S	ignatur	e)
Projec	1 Tille						Job No.	•				
Date	.Tlme	Sam I.D.		Sample Type	No. Conta		Sampling S	Slle		Remart	ks	
4-16-7	٥٠ // ١	MWI	06	water	- C	Your	1.101	1		JOA.		
						J.C	Done			seniualite	62 .	<u> </u>
				<u> </u>	-	18	race		-	her (przit		·
			 -		<u> </u>	SUM	1)6014			<u>حي''</u>		
	4_	<u> </u>			1.3	5010	1-(A)C	73		netses		· · · · · · · · · · · · · · · · · · ·
	9:00	MWI	07		2.4	Unc	1.101)OA		· · · · · · · · · · · · · · · · · · ·
	9:00				1 - 3		0000			senivalit	(es	
					2-1		noice.			res / post		
						OMR	Nach					<u>ن</u>
-	<u> </u>	7P-				roll	HNO	3		uo zls		
- -		1 > -			'	١٠٠٠				XIA		
/-			/ .									·
									∵∥ <u>·</u> `			
	\				{							
	ished by	Date	Time	Received (Signatur	- I	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date .	Time
•	ished by:	Date	Time	Received (Signatur	* 1	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
	lahed by s	Date	Time	Kacelved (Signature	· .	Time	(Signature)	Date	Time	Received by: (Signature)	Date	Time
		_l	<u> </u>	<u> </u>			·····		ll			

260x25 314-9934599

Sample	e Source	& Clien	1 ,	Ford	···				Fle	old Personnel (S	ignature	e)
	1 Tille			<u> </u>	•		Job No. 1994	13-007)			
Date	.Tlme	Søm I.D.	plø No.	Sample Type	No. Conta		Sampling S			Remark	(S	
(-12	9:00	11011	0	witi	7				() Seni, pes	1 hears	Nel
	10:00	MWIC			7						·	
	10:30	MWI	•									
I	13:30	nwi)							
	14:30	MWI		J		_				. (
U		TR. 3		U	2					10c · ·		
		1										
											· ·	
								/				
												
/							_		_			
									<u>. </u>		•	
	<u> </u>					,				,		
	ished by sture)	Date	Time	Received (Signature	, E	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
1	2/1/	14/17	520	((arBurrer)			(018,1111)		
•	lahéd by	Date	Time	Received !		Time	Relinquished by:	Date	Time	Received by:	Date	Time
Sign	sture)			. (Signature	•)		(Signature)	·		(Signature)		
Limu	laticd by	Date	Time	Kecelved 1	yı Data	Time	Relingulahed by:	Date	Time	Received by:	Date	Time
	ture)			(Signature			(Signature)			(Signature)		
		1				1. 1		1 1		~		

in it is in the illing Freed

Sampl	e Source	& Clien	1	······································	· · · · · · · · · · · · · · · · · · ·			·····	Fle	old Personnel (S	ignatur	e)
Projec	t Tille				•		Job No. 1994	3.002				
Date Time		Sample I.D. No.		Sample Type	No. of Containers		Sampling Site		·	Remarks		
4-17 11:00 MW/09		water 7						Var, senival. hls post here				
		1							11	retols		
								•				
		· · · · · · · · · · · · · · · · · · ·							-		•	i
	Ished by ature)	1./	Time SiZo	Received (Signatur Muhyuuh	6)	Time 17 ²⁰	Relinquished by: (Signature)	Date .	Time	Received by: (Signature)	Date .	Time
(Sign	•		Time	Received (Signatur	by: Date	Time	(Signature)	Date	Time	Received by: (Signature)	Date	Time
	laticd by:	Date	Time	Kacelved (Signature	· 1	Time	(Signature)	Date	Time	Received by: (Signature)	Date	Time

b. CEP ...th. J.... Ai-when

Samp	le Source	& Client	1 F	ord					Flo	old Personnel (S	ignatur	2)
Proje	ci Tille	Ear		C: 6.	•		Job No. 1994	/3-00	2			
Dalo	emlT.	Sam I.D.	ple	Sample Type	No. Conta	of dners	Sampling	Site		Remarl		
4-17	1/00	MWI	29U	witer	1					Br Rediolow	cel	
4-17	11:00	MWIC	-	wati	1					Br Rediologi And	اندر	
)	
··										· · · · · · · · · · · · · · · · · · ·		·• ·
												
		<u> </u>				 	_				 -	<u>*</u>
$\overline{-}$												
								•	- -			
											•	
	ulshed by	1 Date / 4/1>	Time	Received (Signatur	7 1	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
	(R/)	~	Time	Received	· •	Time	Relinquished by t	Date	Time	Received by:	Date	Time
(SIg	nature)			(Signatur	e)		(Signature)			(Signature)		
	ulshed by	Date	Time	Kacelved (Signature		Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time

APPENDIX C Laboratory Analytical Data

Dames & Moore 11701 Borman Drive, Suite 340

Saint Louis, MO 63146

Date Received: 04/18/90 Date Reported: 05/09/90

Work Order: 90-04-353

Category:

Attn: Dave Purington

Work ID: Environmental

P 0 # :

DAMES & MOORE

MAY 14 1990

Test	11-24-	MW109U	MW109F	ST. LOUIS, MISSOURI		
	Units	04/17/90 11:00	04/17/90 11:00			
Gross Alpha	pCi/liter	(2	<5			
Gross Beta	·	7+/-3	⟨3			
Cesium-137	pCi/liter	11.0 0.8	₹2			
Potassium-40	pC1/liter	(5	. <5			
Radium-226	pCi/liter	1.5+/-1.0	€0. 6			
Radium-228	pCi/liter	C1	<1			
Thorium-228	pCi/liter	<0. 6	₹0. 6			
Thorium-230	pCi/liter pCi/liter	₹0. 6	₹0. 6			
				-		

Controls for Environmental Political, inc. P.C. BUX 5351 • Santa Ferriew Masica Bizbild out of State 7/10/545-2188 • FAX - 505-982-9288

Page Received:	2 04/18/90	CEP, Inc. 05/09/90	REPORT 16: 18: 30	Work Order # 90-04-353 Continued From Above
Test	Units	MW109U	MW109F	
Thorium-232		04/17/90 11:00 <0.6	04/17/90 11:00 <0.6	
Uranium-234	pCi/liter pCi/liter	⟨0, ₺	⟨0, 6	•
Uranium-235	•	⟨0, 6	⟨0, 6	
Uranium-238	pCi/liter	⟨0. ₺	<0.6	

Certified By:

Page 1 Received:	ITRSL 0	at Ridge 05718/	REPORT 90 19:17:24	Work Order # 50-04-049
REPORT	DAMES & MOORE	PREPARED	IT/RADIOLOGICAL SCIENCES	LAB.
סד	11701 BORMAN DRIVE	BY	1550 BEAR CREEK ROAD	-
	SUITE 340		GAK RIDGE, TN 37831	Etellin
	ST. LOUIS, NO 63146			CERTIFIED BY
ATTEN	DAVID PURINGTON	ATTEN	ERS	
		PHINE	615-482-9707	CONTACT JIM DILLARD
CLIENT	DAMES ST SAMPLES 1			
COMPANY	DAMES & MOORE	•		•
	ST. LOUIS, MO	•		
		AMENDED	TO CORRECT UNITS AND RESUL	TS. U-ISO AND TH-230 AND
		TH-232 W	ERE ALSO ADDED TO COMPLETE	REPORT.
MORK ID	HATER SAMPLE			
		•		
TRANS		_		
TYPE				
P. O. #		•		
INVOICE	under separate cover			
		•		
SAMPLI 01 WAT	E IDENTIFICATION CALP	HA CROSS A	TEST CODES and NAMES use	ed on this report
<u> </u>		A CROSS B		
			PEC	
		6 RA-226		
		8 RA-228		
		8 TH-228		
		0 TH-230	,	
		22 TH-232		
		U-234		
		U-235/2	36	
		11-220		

Morrey Committee

MAY _ 1990

ST. LOUIS, mISSOURI

Page 2 Received: 04/13/90

ITRSL Cat Ridge REPORT
Results by Sample

Work Order # 50-04-049

SAPLE ID WAT

FRACTION 01A TEST CODE CS NAME CAPTA SPEC
Date & Time Collected 04/12/90 Category

UNITS <u>eCi/1</u> WRTN 05/18/90

VERIFIED BY KDF

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40 CS-137	<1. 84E+2 <2. 0E+1		GROSS ALPHA GROSS BETA RA-228 U-234 U-235/236 U-238	2. 27E+1 4. 92E+0 2. 16E+0 46. 88E+0 1. 02E+1 41. 0E+0 8. 65E+0	0. 36E+1 2. 17E+0 0. 63E+0 0. 20E+1 1. 80E+0
			TH-230 TH-232	6. 01E+1 <1. 0E+0	0. 87E+1

Page 1 Received:	1TRSL 0	at Ridge 05/18/9	REPORT 70 19: 17: 24	Work Order # 50-04-049
REPORT	DAMES & MOCRE	PREPARED	IT/RADIOLDGICAL SCIENCE	S LAB.
	11701 BORMAN DRIVE		1550 BEAR CREEK ROAD	= n
	SUITE 340	,	DAK RIDGE, TN 37831	Collin
	ST. LOUIS, NO 63146	•		CERTIFIED BY
ATTEN	DAVID PURINCTON	ATTEN	ERS	
		•	615-482-9707	CONTACT JIM DILLARD
CLIENT	DAMES ST SAMPLES 1			
	DAMES & MOORE			•
	ST. LOUIS, MO			
		WENDED .	TO CORRECT UNITS AND RES	ULTS. U-ISO AND TH-230 AND
		TH-232 M	ERE ALSO ADDED TO COMPLE	TE REPORT.
WORK ID	HATER SAMPLE			
TAKEN		•		
TRANS				
TYPE				
P.O. #				
INVOICE	under separate cover			
SAMPLI	E IDENTIFICATION		TEST CODES and NAMES u	sed on this report
O1 HAT		HA CROSS A		
		A CROSS B		
			PEC .	
		6 RA-226		
		8 RA-228		
		8 <u>TH-228</u>		
		10 <u>TH-230</u> 12 TH-232		
		<u>V-234</u>		
	<u>uzs-</u> U235		26	
	<u>u233</u> U238		<u></u>	
	VEJO			

Done Charle

MAY - 1990

ST. LUUIS, iniSSOURI

Page 2 Received: 04/13/90

ITRSL Dat Ridge REPORT
Results by Sample

Work Order # 50-04-049

SAMPLE ID WAT

FRACTION 01A TEST CODE CS NAME QANNA SPEC
Date & Time Collected 04/12/90 Category

UNITS <u>eCi/I</u> WRTN 05/18/90

VERIFIED BY KDF

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40 CS-137	C1. 84E+2 C2. 0E+1		GROSS ALPHA GROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	2. 27E+1 4. 92E+0 2. 16E+0 C6. 88E+0 1. 02E+1 C1. 0E+0 8. 65E+0 6. 01E+1 C1. 0E+0	0. 36E+1 2. 17E+0 0. 63E+0 0. 20E+1 1. 80E+0 0. 87E+1

Page 1 Received: 04/18/90	ITRSL Cat Ridge 05/1	REPORT 8/90 15: 27: 40	Work Order # 50-04-065
REPORT DAMES & MOORE	PREPAR	ED IT/RADIOLOGICAL	SCIENCES LAB.
TO 11701 BORMAN DRIVE		BY 1550 BEAR CREEK	
SUITE 340		DAK RIDGE, TH S	
ST. LDUIS, NO 63146			CERTIFIED BY
ATTEN DAVID PURINGTON	ATT	en ers	
4		NE 615-482-9707	CONTACT JIH DILLARD
CLIENT DAYES ST SAM	PLES 12		
COMPANY DAMES & MODRE			,
FACILITY ST. LOUIS, HO			
	AMENDE	D TO INCLUDE U-ISC	TH-230 AND TH-232 FOR ALL FRACTIONS.
HORK ID HATER SAMPLES			
Taken			
Trans			
TYPE			
P. O. #			
INVOICE under separate cover			
SAMPLE IDENTIFICATION 01 MM110U	CALPHA CROSS		A NAMES used on this report
02 HW110F	CBETA CROSS		
03 HH102U		SPEC	
04 HH102F	RA226 RA-2		
05 MM108U	RA228 RA-2		
06 MN108F	TH228 TH-2		· ·······
07 HM103U	TH230 TH-2		
08 MH103F	TH232 TH-2	5	
09 MH104U	U234 U-234		
10 MH104F	U235 U-23	/236	
11 MW101F	U238 U-23		
12 HH101U			

. . .

Page 2 Received: 04/18/90

REPORT ITRSL Cat Ridge Results by Sample

Work Order # 50-04-065

SAMPLE ID MILLOU

FRACTION 01A TEST CODE GS NAME CAMMA SPEC
Date & Time Collected 04/17/90 Catego

Category NA

UNITS PCi/1 MRTN 05/18/90 VERIFIED BY RDJ

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40 CS-137	C1. 0E+2 C2. 0E+1		CROSS ALHPA CROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230	C1. 0E+0. C4. 0E+0 C1. 0E+0 C3. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0	
			TH-232	<1.0E+0	

SAMPLE ID MILLOF

FRACTION 02A TEST CODE GS NAME CAMPA SPEC Date & Time Collected 04/17/90 Catego

Category NA

UNITS pci/1 WRTN 05/18/90 VERIFIED BY RDJ

CAPPIA SPEC RESULT 2-SIGNA OTHER RESULT 2-SIGHA K-40 ORDSS ALPHA C1. 0E+0 <1. 9E+2 CS-137 C2, 0E+1 QROSS BETA <4.0E+0 RA-226 C1. 0E+0 RA-228 **C3.0E+0** V-234 <1.0E+0 U-235/236 C1. 0E+0 V-239 <1.0E+0 TH-230 C1. 0E+0 TH-232 **<1.0E+0**

Page 3 Received: 04/18/90

ITRSL Oak Ridge REPO Results by Sample

REPORT

Work Order # 50-04-065

SAMPLE ID MI102U

FRACTION OGA TEST CODE GS NAME CAMMA SPEC
Date & Time Collected 04/17/90 Category NA

UNITS aCi/1 MRTN 05/18/90 WERIFIED BY RDJ

CANTIA SPEC	RESULT	2-SICMA	OTHER	RESULT	2-SICHA
K-40 CS-137	<1. 4E+2 <2. 0E+1		GROSS ALPHA GROSS BETA RA-226 RA-228	CB. 08E+0 7. 09E+0 C1. 0E+0 C3. 0E+0	5. 46E+0
			U-234 U-235/236	1. 42E+0 <1. 0E+0	0. 39E+0
			U-238	1. 30E+0	0. 38E +0
			TH-230	<1. 0E+0	
			TH-232	<1.0E+0	

SAMPLE ID MI102F

FRACTION 04A TEST CODE GS NAME CAMMA SPEC
Date & Time Collected 04/17/70 Catego

Category NA

UNITS pCi/1 WRTN 05/18/90 VERIFIED BY RDJ

RESULT	2-SICHA	OTHER	RESULT	2-SICHA
<1. BE+2		GROSS ALPHA	C2. 26E+0	
(Z_0E+1		GROSS BETA	CB. 43E+0	
		RA-226	<1.0E+0	
		RA-228	C3. 0E+0	
		U-234	2. 43E+0	0. 57E+0
		U-235/236	<1. 0E+0	
		U-238	1. 57E+0	0. 45E+0
		TH-230	C1. 0E+0	
		TH-232	<1.0E+0	
	<1. BE+2	C1. BE+2	C1. BE+2 GROSS ALPHA C2. 0E+1 GROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230	C1. BE+2 GROSS ALPHA C2. 26E+0 C2. 0E+1 GROSS BETA CB. 43E+0 RA-226 C1. 0E+0 RA-228 C3. 0E+0 U-234 2. 43E+0 U-235/236 C1. 0E+0 U-238 1. 57E+0 TH-230 C1. 0E+0

Page 4 Received: 04/18/90

REPORT ITRSL Dat Ridge Results by Sample

Hort Order # 50-04-065

SAMPLE ID MILIOSU

FRACTION OSA TEST CODE CS NAME CAMMA SPEC Date & Time Collected 04/17/90 Category

Category NA

UNITS pCi/1 WRTN 05/18/90 VERIFIED BY RDJ

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40 CS-137	C1. 9E+2 C2. 0E+1		OROSS ALPHA OROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	C7. 50E+0 C1. 03E+1 C1. 0E+0 C3. 0E+0 2. 20E+0 C1. 0E+0 1. 67E+0 1. 57E+0 C1. 0E+0	0. 47E+0 0. 40E+0 0. 61E+0

SAMPLE ID MINIORF

FRACTION OGA TEST CODE GS NAME CAMMA SPEC
Date & Time Collected 04/17/90 Category

UNITS BCi/1 MRTN 05/18/90 VERIFIED BY RDJ

CANTIA SPEC RESULT 2-SIGNA OTHER RESULT 2-SICHA CROSS ALPHA C1.06E+1 K-40 <1. 5E+2 CS-137 C2. 0E+1 GROSS BETA CB. 36E+0 RA-226 **<1.0E+0** RA-228 C3. 0E+0 U-234 3. 57E+0 0. 62E+0 U-235/236 **C1. 0E+0** U-238 2. 93E+0 0. 54E+0 TH-230 <1.0E+0 TH-232 **<1.0E+0**

Page 5 Received: 04/18/90

ITRSL Cat Ridge REPORT

REPORT

Hork Order # 50-04-065

SAMPLE ID MI103U

FRACTION OTA TEST CODE GS NAME GANNA SPEC
Date & Time Collected 04/17/90 Category NA

UNITS pCi/1 MRTN 05/18/90 VERIFIED BY RDJ

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40 CS-137	<1. 5E+2 <2. 0E+1		GROSS ALPHA GROSS BETA RA-226 RA-228	1. 72E+1 2. 34E+1 (1. 0E+0 (3. 0E+0	0. 96E+1 1. 01E+1
			U-234 U-235/236	1. 26E+1 C1. 0E+0	0. 19E+1
			U-238	1. 23E+1	0. 19E+1
			TH-230	1. 22E+0	0. 52E+0
			TH-232	C1. 0E+0	

SAMPLE ID MH103F_

. 3

FRACTION OBA TEST CODE GS NAME CAMMA SPEC Date & Time Collected 04/17/90 Catego

Category NA

UNITS pCi/1 WRTN 05/18/90 VERIFIED BY RDJ

CAPPA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SIGMA
K-40 CS-137	C1. BE+2 C2. 0E+1		CROSS ALPHA CROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	C7. 00E+0 C1. 34E+1 C1. 0E+0 C3. 0E+0 5. 10E+0 C1. 0E+0 3. 55E+0 1. 57E+0 C1. 0E+0	0. 85E+0 0. 66E+0 0. 45E+0

Page 6 Received: 04/18/90

ITRSL Dat Ridge REPORT
Results by Sample

Work Order # 50-04-065

SAMPLE ID MILIOAU

FRACTION 09A TEST CODE CS NAME CAMMA SPEC Date & Time Collected 04/17/90 Category

Category NA

UNITS pCi/1 MRTN 05/18/90 VERIFIED BY RDJ

CANNA SPEC	RESULT	2-51CM	OTHER	RESULT	2-SICHA
K-40	C1. 4E+2		CROSS ALPHA	1. 14E+1	0. 74E+1
CS-137	C2_0E+1		CROSS BETA	1. 87E+1	0.74E+1
			RA-226	<1.0E+0	
			RA-228	C3. 0E+0	
			U-234	3. 80E+0	0.73E+0
			U-235/236	C1. 0E+0	
			U-238	2 685+0	0. 59E+0
			TH-230	2.00E+0	0. 65E+0
			TH-232	1 47E+0	0 55E+0

SAMPLE ID MAIOAF

FRACTION 10A TEST CODE 6S NAME GAMMA SPEC
Date & Time Collected 04/17/90 Category NA

UNITS pCi/1 WRTN 05/18/90 VERIFIED BY ROJ

CANTIA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SICHA
K-40 CS-137	1. 04E+2 C2. 0E+1	0. 60E+2	GROSS ALPHA GROSS BETA RA-226 RA-228 U-234 U-235/236	C2. 0E+0 C3. 3E+0 C1. 0E+0 C3. 0E+0 1. 98E+0 C1. 0E+0	0. 48E+0
			V-238 TH-230 TH-232	1. 10E+0 C1. 0E+0 C1. 0E+0	0. 35E+0

Page 7 Received: 04/18/90

ITRSL Oak Ridge REPOR Results by Sample

REPORT

Work Order # 50-04-065

SAMPLE ID MALOIF

FRACTION 11A TEST CODE CS NAME CAMMA SPEC
Date & Time Collected 04/17/90 Category NA

UNITS pCi/1 WRTN 05/18/90 VERIFIED BY RDJ

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40 CS-137	C1. 6E+2 C2. 0E+1		GROSS ALPHA GROSS BETA RA-226 RA-228	77. 7E+0 9. 52E+0 (1. 0E+0 (3. 0E+0	6. 27E+0
			U-234 U-235/236 U-238 TH-230 TH-232	1. 26E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0	0. 31E+0

SAMPLE ID HU101U

FRACTION 12A TEST CODE GS NAME CAMMA SPEC
Date & Time Collected 04/17/90 Category

UNITS pCi/1 WRTN 05/18/90 VERIFIED BY RDJ

CANTIA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGMA
K-40 CS-137	C1. 3E+2 C2. 0E+1		CROSS ALPHA CROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	C1. 0E+1 2. 41E+1 C1. 0E+0 C3. 0E+0 9. 06E+0 1. 37E+0 8. 64E+0 1. 02E+0 C1. 0E+0	0. 84E+1 1. 75E+0 0. 58E+0 1. 69E+0 0. 36E+0

Page 1 Received:	17 : 04/17/90	RSL Cat	Ridge 05/18/9	REPURT 70 16: 11: 46		Nort Order \$ 50-04-064
REPORT	DAMES & MOORE		PREPARED	IT/RADIOLOGICAL	SCIENCES LA	NB.
	11701 BURMAN DRIVE			1550 BEAR CREEK		
•-	SUITE 340			DAK RIDGE TN 3		- Christan
	ST. LOUIS, NO 63146					PERTIFIED BY
ATTEN	DAVID PURINGTON	 -	ATTEN	ERS		
				615-482-9707		CONTACT JIM DILLARD
CLIENT	DAMES ST SAMPL	ES 6				
	DAMES & MOORE					,
	ST. LOUIS, MO					
			AMENDED 1	TO INCLUDE U-ISO	. TH-230 AND	TH-232 ON ALL FRACTIONS
			AND TO CO	DRRECT CROSS ALP	HA AND CROSS	BETA RESULTS FOR 05A.
WORK ID	HATER SAMPLES					
TAKEN						
TRANS						
TYPE						
P. C. #						
INVOICE	under separate cover					
SAMPLI 01 MH105	E IDENTIFICATION	CALPHA	CROSS AL	TEST CODES and	NAMES used	on this report
02 MH105		CBETA	CROSS BE	TA		
03 MM1060	U		CAPPA SE			
04 MH106		RA226	RA-226		<u> </u>	
05 MH107	U	RA228	RA-228			
06 MH107	:	TH228	TH-228			
		TH230	TH-230			
		TH232	TH-232			
		U234	U-234			
		U235	U-235/2	36		
		V238	V-238			

Page 2 Received: 04/17/90

ITRSL Oak Ridge REPO Results by Sample REPORT

Wort Order # 50-04-064

SAMPLE ID MM105U

FRACTION 01A TEST CODE GS NAME CAMPA SPEC Date & Time Collected 04/15/90 Category

Category NA

UNITS pCi/I WRTN 05/18/90 VERIFIED BY KOF

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICMA
K-40 CS-137	1. 45E+2 C2. 0E+1	0. 74E+2	CROSS ALPHA CROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230	1. 69E+1 1. 45E+1 (1. 0E+0 (3. 0E+0 (1. 0E+0 (1. 0E+0 (1. 0E+0 (1. 0E+0	0. 83E+1 0. 91E+1

SAMPLE ID MI105F

FRACTION 02A TEST CODE 6S NAME CAPPA SPEC
Date & Time Collected 04/15/90 Catego

UNITS PCI/L WRTN 05/18/90 VERIFIED BY KDF

CAPPIA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SIGNA
K-40 CS-137	C1. 4E+2 C2. 0E+1		CROSS ALPHA GROSS BETA RA-226 RA-228	C1. 01E+1 7. 32E+0 C1. 0E+0 C3. 0E+0	5. 64 E+0
			U-234 U-235/236 U-238 TH-230 TH-232	1. 33E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0	0. 33E+0

Page 3 Received: 04/17/90

ITRSL Cak Ridge REPORT
Results by Sample

Work Order # 50-04-064

SAMPLE ID MILIOSU

FRACTION OGA TEST CODE CS NAME CAPPA SPEC
Date & Time Collected 04/16/90 Category NA

UNITS pCi/1 MRTN 05/18/90 VERIFIED BY KOF

2. 83E+2 (2. 0E+1	1. 14E+2	CROSS ALPHA	1. 01E+2	0. 23E+2
		GROSS BETA RA-226 RA-228	2. 95E+1 1. 41E+0 C3. 0E+0	1. 22E+1 0. 29E+0 0. 49E+0
		U-235/236 U-238 TH-230	C1. 0E+0 1. 37E+0 4. 45E+0	0. 38E+0 1. 16E+0 1. 45E+0
	C2 0E+1	G2 0E+1	RA-226 RA-228 U-234 U-235/236 U-238	RA-226 1. 41E+0 RA-228 C3. 0E+0 U-234 2. 18E+0 U-235/236 C1. 0E+0 U-238 1. 37E+0 TH-230 4. 45E+0

SAMPLE ID MILLOGE

FRACTION 04A TEST CODE 6S NAME CAMMA SPEC
Date & Time Collected 04/15/90 Category

Category NA

UNITS pC1/1 WRTN 05/18/90 VERIFIED BY KOF

CAMPIA SPEC	RESULT	2-SIGNA	OTHER	RESULT	2-SICHA
K-40 CS-137	C1. 4E+2 C2. 0E+1		GROSS ALPHA GROSS BETA	C1. 02E+1 C1. 60E+1	
			ra-226 ra-228	1. 05E+0 C3. 0E+0	0. 25E+0
			U-234 U-235/236	3. 81E+0 C1. 0E+0	0. 63E+0
			U-238	2. 65E+0	0. 49E+0
			TH-230	(1.0E+0	
			TH-232	<1. 0E+0	

Page 4 Received: 04/17/90

ITRSL Oak Ridge REPO Results by Sample REPORT

Work Order # S0-04-064

SAMPLE ID MM107U

FRACTION 05A TEST CODE 6S NAME CAMMA SPEC
Date & Time Collected 04/16/90 Catego

Category NA

UNITS pCi/1 WRTN 05/18/90 VERIFIED BY KOF

CAPMA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SIGMA
K-40 CS-137	<1.8€+2 <2.0€+1		CROSS ALPHA CROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230	2. 35E+1 1. 77E+1 C1. 0E+0 C3. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0	1. 14E+1 1. 10E+1
			TH-232	C1. 0E+0	

SAMPLE ID MH107F

1

FRACTION 06A TEST CODE GS NAME CAMMA SPEC Date & Time Collected 04/15/90 Catego

UNITS pCi/1

WRTN 05/18/90

VERIFIED BY KOF

CANTIA SPEC	RESULT	2-SICNA	OTHER	RESULT	2-SICMA
K-40 CS-137	C1. 8E+2 C2. 0E+1		GROSS ALPHA GROSS BETA RA-226 RA-228 U-234 U-235/236 U-238	C1. 01E+1 C9. 26E+0 C1. 0E+0 C3. 0E+0 1. 59E+0 C1. 0E+0 1. 24E+0	0. 39E+0 0. 34E+0
			TH-230 TH-232	C1. 0E+0 C1. 0E+0	

Page 1 Received:	04/13/90	ITERL CAK	RIDGE 05/31/9	0 15: 57	REPORT 7: 35			Order # 50-05-179 Not Complete
REPORT	DAMES & MODRE	F	REPARED	IT/RAD	IOLOGICAL	SCIENCES	LAB.	
TO	11701 BORMAN DRIVE		BY	1550 BI	AR CREEK	ROAD		$\sim 10^{-} M/$
	SUITE 340				DGE, TN 3			how the iller
	ST. LOUIS, MO 63146						1/1	ERTIFIED BY
ATTEN	DAVID PURINGTON		ATTEN	ERS			/	
					2 -9 707			CONTACT JIM DILLARD
CLIENT	DAMES ST S	AMPLES 3		<u> </u>				VALUE VALUE AND AND AND AND AND AND AND AND AND AND
	DAMES & MOORE							,
	ST. LOUIS, NO							
			# SAMPL	ES B1-	A AND B2-	A WILL BE	REPORTE	D AT A LATER DATE.
		-						
MORK ID	SOIL SAMPLES							
TAKEN								
TRANS								
TYPE								
P. O. #								
	under separate cover							
	200000							
CAMPI F	IDENTIFICATION			ाञ्चा	ODES and	NAMES use	d on th	ie maant
01 B2-A	. 1901111 19111191	CALPHA	CROSS AL	PHA `		INTER VIC		113 164014
02 54			CROSS BE			_		
03 B1-A			RA-226					
			RA-228					
				FORM F	DR REPORT	INC		
			TH-228					
			TH-230					
			TH-232		***************************************			
		11202	111 5-5-5					

DAMES & MOORE

JUN 04 1990

ST. LOUIS. MISSOURI

Page 2 Received: 04/13/90 ITORL CAK RIDGE REPORT
Results by Sample

Work Order # 50-05-179

SAMPLE ID B2-A

FRACTION 01A TEST CODE SPEC NAME SPECIAL FORM FOR REPORTING Date & Time Collected 04/12/70 Category MA

PARAMETER	RESULT	2-SICHA ERROR	UNITS
CROSS ALPHA	4. 10E+3	0. 83E+3	pCi/g
CROSS BETA	6. 27E+2	1. 29E+2	pCi/g
RA-226	8. 95E+1	0. 47E+1	pCi/g
RA-228	(1.16E+0		pCi/g
ואר וביו			

SAMPLE ID S4

FRACTION 02A TEST CODE SPEC NAME SPECIAL FORM FOR REPORTING
Date & Time Collected 04/12/90 Category NA

PARAMETER RESULT 2-SIGNA ERROR UNITS

CROSS ALPHA 1. 93E+1 0. 84E+1 pCi/g

Page 3 Received: 04/13/90

ITORL DAK RIDGE REPORT Results by Sample

REPORT

Work Order # 50-05-179

SAMPLE ID BI-A

FRACTION 03A TEST CODE SPEC NAME SPECIAL FORM FOR REPORTING
Date & Time Collected 04/12/90 Category NA

PARAMETER	RESULT	2-SIGNA ERROR	UNITS
GROSS ALPHA GROSS BETA	1. 14E+3 2. 50E+2	0. 24E+3 0. 53E+2	pCi/g pCi/g
TH-ISN			

Page 1 Received	: 04/17/90	ITORL DAK RIDG 05/	E REPORT 31/90 15: 56: 12	Work Order # 50-05-180
	DAMES & MODRE	PREPA	RED IT/RADIOLOGICAL SCIENCES	S LAB.
π	11701 BORMAN DRIVE		BY 1550 BEAR CREEK ROAD	$-a \cdot m /$
	SUITE 340		DAK RIDGE, TN 37831	ACTIVITY BY
ATTEM	ST. LOUIS, MO 63146 DAVID PURINCTON		Ten ers	CERTIFIED BY
MITEM	MAIN LOWING I DU		ONE 615-482-9707	CONTACT JIM DILLARD
CLIENT	DAMES ST SA	MPLES <u>1</u>	010 100 1707	TOTAL STATE OF THE
	DAMES & MOORE			
	ST. LOUIS, MO			
				
WORK ID	WATER SAMPLE			
TAKEN				
TRANS				
TYPE				
P. O. #				
INVOICE	under separate cover			
SAMPLE 01 MM 104	E IDENTIFICATION	CALPHA CROS	TEST CODES and NAMES US	sed on this report
		SPEC SPEC	IAL FORM FOR REPORTING	

Page 2 Received: 04/17/90

ITORL CAK RIDGE REPO Results by Sample

REPORT

Work Order # S0-05-180

SAMPLE ID MM 106U

FRACTION 01A TEST CODE SPEC NAME SPECIAL FORM FOR REPORTING Category NA

PARAMETER

RESULT

2-SICHA ERROR UNITS

CROSS ALPHA

3. 07E+2

1.33E+2

pCi/l

Consulting Engineers, Scientists and Analytical Services

1908 Innerbelt Business Center Drive St. Louis, Missouri 63114-5700 (314) 426-0880 Fax (314) 426-4212

REPORT OF ANALYSIS

CLIENT: Mr. Dave Purington

Dames & Moore

11960 Westline Ind. Drive

Suite 155

St. Louis, NO 63146

PROJ. #: 3500-00385

REPORT DATE:

٠,١

May 10, 1990

SAMPLE ARALYZED: One water sample analyzed

for the parameters

listed below.

DATE RECRIVED:

April 18, 1990

P.O. #:

			HW1 09
PARAMETER	UNITS	MW109	DUPLICATE
YNOMITHA	(DG/L)	< 24	< 24
ARSENIC	(UG/L)	3.1	2.5
BERYLLIUM	(UG/L)	< 3	< 3
CADMIUM	(DG/L)	< 3	< 3
CHROMIUM	(DG/L)	< 10	< 10
COPPER	(DG/L)	< 14	< 14
LEAD	(UG/L)	< 73	< 73 ·
MERCURY	(UG/L)	0.48	-
NICKEL	(DG/L)	< 15	< 15
SILVER	(UG/L)	1.1	<1.0
SELENIUM	(UG/L)	1.3	<1.0
THALLIUM	(UG/L)	<1.0	<1.0
ZINC	(UG/L)	< 16	< 16
Paraheter	UNITS	MW109	
		-	
CYANIDE	(UG/L)	< 5	

HOTE: See reverse side for "STANDARD CLAUSES."

disk 87/bbg

DAMES & MOORE

MAY 14 1990

ST. LOUIS, MISSOURI

Twin City Testing Corporation A member of the HIH group of compenies

CLIENT: Mr. Dave Purington Dames & Moore

DATE RECEIVED: April 18, 1990

REPORT DATE: May 10, 1990

PROJ. #: 3500-00385

P.O. #:

			DETECTIO	N		MW109
Parameter		UNITS	LIMITS	BLANK	MW109	DUPLICATE
LINDANE		(UG/L)	0.002	<0.002	<0.002	<0.002
HEPTACHLOR		(UG/L)	0.003	<0.003	<0.003	<0.003
HEPTACHLOR EPOXIDE	•	(UG/L)	0.004	<0.004	<0.004	<0.004
ENDOSULFAN I		(UG/L)	0.005	<0.005	<0.005	<0.005
DIELDRIN		(UG/L)	0.006	<0.006	<0.006	<0.006
PNDOSULPAN II		(DG/L)	0.010	<0.010	<0.010	<0.010
4,4'-DDT		(UG/L)	0.015	<0.015	<0.015	<0.015
ENDRIN ALDEHYDE		(UG/L)	0.024	<0.024	<0.024	<0.024
METHOXYCHLOR		(UG/L)	0.063	<0.063	<0.063	<0.063
alpha-BHC		(UG/L)	0.002	<0.002	<0.002	<0.002
beta-BHC		(UG/L)	0.005	<0.005	<0.005	<0.005
delta-BHC		(UG/L)	0.001	<0.001	<0.001	<0.001
gamma-CHLORDANE		(UG/L)	0.003	<0.003	<0.003	<0.003
alpha-CHLORDANE		(UG/L)	0.003	<0.003	<0.003	<0.003
4,4'-DDE		(UG/L)	0.006	<0.006	<0.006	<0.006
ENDRIN		(DG/L)	0.016	<0.016	<0.016	<0.016
4,4'-DDD		(DG/L)	0.011	<0.011	<0.011	<0.011
ENDOSULPAN SULFATE		(DG/L)	0.022	<0.022	<0.022	<0.022
ENDRIN KRTONE		(UG/L)	0.019	<0.019	<0.019	<0.019
AROCLOR-1016		(DG/L)	0.047	<0.047	<0.047	<0.047
AROCLOR-1260		(DG/L)	0.187	<0.187	<0.187	<0.187
AROCLOR-1221		(UG/L)	0.107	<0.107	<0.107	<0.107
AROCLOR-1232		(UG/L)	0.083	<0.083	<0.083	<0.083
AROCLOR-1242		(UG/L)	0.044	<0.044	<0.044	<0.044
AROCLOR-1254		(UG/L)	0.054	<0.054	<0.054	<0.054
AROCLOR-1248		(UG/L)	0.094	<0.094	<0.094	<0.094
ALDRIN		(DG/L)	0.003	<0.003	<0.003	<0.003
TOXAPHENE		(VG/L)	0.205	<0.205	<0.205	<0.205
		DETECTION	1		HW109	
PARAMETER	UNITS	LIMITS	BLANK	MW109	DUPLICATE	1
2,4-D	(UG/L)	0.745	<0.745	<0.745	<0.745	-
SILVEX	(UG/L)	0.197	<0.197	<0.197	<0.197	

CLIENT: Mr. Dave Purington

Dames & Moore

REPORT DATE:

May 10, 1990 DATE RECEIVED: April 18, 1990

PROJ. #: 3500-00385

P.O. #:

FROO. 4. 3300-00383		7.0.	··
	DETECTION		
	LIMIT	BLANK	HW109
VOLATILE COMPOUNDS	(UG/L)	(DG/L)	(UG/L)
ACROLEIN	100	ND	ND
ACRYLONITRILE	100	ND	ND
Benzene	5	מע	MD
Brohodichloromethane	5	ND	ND
BROHOFORM	5	מא	ND
Brohohethane	10	מא	ND
CARBON TETRACHLORIDE	5	מא	ND
CHLOROBENZENE .	5	מא	ND
CHLOROETHANE	10	מא	ND
2-CHLOROETHYL VINYL ETHER	5	ND	ND
CHLOROFORM	5	ND	· MD
CHLOROMETHANE	10	ND	MD
DIBROHOCHLOROMETHANE	5	ND	ND
1,1-dichlorethane	5	ND	6
1,2-dichloroethane	5	ND	MD
1,1-dichloroethene	5	ND	ND
TOTAL 1,2-DICHLOROETHENE	5	ND	ND
1,2-dichloropropane	5	ND	ИD
CIS-1,3-DICHLOROPROPENE	5	ND	ND
ethyl benzene	5	ND	ND
METHYLENE CHLORIDE	5	ND	MD
1,1,2,2-TETRACHLOROETHANE	5	ND	ND
TETRACHLOROETHYLENE	5	ND	ND
POLUENE	5	ND	ND
1,1,1-trichloroethane	5	ND	ND
1,1,2-TRICHLOROETHANE	5	ND	ND
TRICHLOROETHENE	5	ND	ND
VINYL CHLORIDE	10	ND	ND
· — · · · · · · · · · · · · · · · · · ·		2	
		•	•
SURROGATE COMPOUNDS		RCVRY	RCVRY
1,2-DICHLOROETHANE-D4		94	88
TOLUENE-D8		101	99
p-8F8		98	98

CLIENT: Mr. Dave Purington Dames & Moore

REPORT DATE: May 10, 1990

DATE RECEIVED: April 18, 1990

PROJ. #: 3500-00385

P.O. #:

	DETECTION	N .		MW109
	LIMIT	BLANK	HW109	DUP
ACID COMPOUNDS	(UG/L)	(UG/L)	(UG/L)	(UG/L)
2-CHLOROPHENOL	10	ND	ND	ND
2,4-DICHLOROPHENOL	10	ND	MD	ND
2,4-DIMETHYLPHENOL	10	ND	ND.	ND
2,4-DINITROPHENOL	50	ND	CM	ND
2-HITROPHENOL	10	ND	ND	ND
4-HITROPHENOL	50	ND	מא	ND
PENTACHLOROPHENOL	50	ND	ND	MD
PHENOL	10	ND	ND	ND
2,4,6-TRICHLOROPHENOL	10	ND	ND	ND
2-METHYL-4,6-DINITROPHENOL	50	ND	ND	ND
4-CHLORO-3-METHYLPHENOL	10	ND	ND .	ND
		•	•	•
SURROGATE COMPOUNDS		RCVRY	RCVRY	RCVRY
				
2-PLUOROPHENOL		48	4*	2*
PHENOL-d6		34	2*	1*
2,4,6-TRIBROMOPHENOL		68	7*	2*

*Below QC limits

•	DETECTION	N		MW109
BASE NEUTRAL	LIHIT	BLANK	HW109	DUP
COMPOUNDS	(UG/L)	(UG/L)	(UG/L)	(UG/L)
				
ACENAPHTHENE	10	ND	ND	ND
ACENAPHTHYLENB	10	ND	ND	MD
ANTHRACENE	10	ND	ND	MD
BENZIDINE	50	ND	ND	MD
Benz (A) anthracene	10	ND	ND	ND
Benzo(B, K) Fluoranthene	10	ND	ND	ND
Benzo (GHI) Perylene	10	ND	ND	ND
Benzo (A) Pyrene	10	ND	ND	ND
BIS (2-CHLOROETHOXY) METHANE	10	ND	ND	ND
BIS(2-CHLOROETHYL)ETHER	10	ND	ND	ND
BIS(2-CHLOROISOPROPYL)ETHER	10	ND	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	10	< DL	ND	14

CLIERT: Mr. Dave Purington
Dames & Hoore

REPORT DATE: DATE RECEIVED:

May 10, 1990 April 18, 1990

PROJ. #: 3500-00385

P.O. #:

	DETECTION	4		MW109	
BASE NEUTRAL COMPOUNDS	LIHIT	BLANK	MW109	DUP	
CONTD.	(DG/L)	(UG/L)	(UG/L)	(VG/L)	
A DOMADONIST DURING ROOM	-10				
4-BROMOPHENYL PHENYL ETHER	10	ND	ND	ND	
BUTYL BENZYL PHTHALATE	10	ND	D	ND	
2-CHLORONAPHTHALENE	10	ND	MD	ND	
4-CHLOROPHENYL PRENYL ETHER	10	סא	ND.	ND	
CERYSENE	10	ИD	ИD	ND	
DIBENZO(A, H) ANTHRACENE	10	ND	ND 	ND	
DI-N-BUTYL PHTHALATE	10	ND	ND	סא	
1,2-DICHLOROBENZENE	10	ND	ND	ND	
1,3-DICHLOROBENZENE	10	ND	ND	ND	
1,4-DICHLOROBENZENE	10	ND	ND	ND	
3,3'-DICHLOROBENZIDINE	20	ND	ND	ND	
DIETHYL PHTHALATE	10	ND	ND.	ND	
DIMETRYL PHTHALATE	10	ND	ND	MD	
2,4-dinitrotoluene	10	ND	ND	D	
2,6-DINITROTOLUENE	10	ND	ND	ND	
DI-N-OCTYL PHTHALATE	10	ND	ND	MD	
1,2-diphenylhydrazine	10	ND	ND	ND	
DI-N-PROPYLNITROSAMINE	10	ND	ND	ND	
PLUORANTHENE	10	ND	ND	ND	
FLUORENE	10	ND	ND	ND	
HEXACHLOROBENZENE	10	D	ИД	ИD	
HEXACHLOROBUTADIENE	10	ND	ND	ND	
HEYACKLOROCYCLOPENTAD IENB	10	ND	ND	ND	
HEXACHLOROETHANE	10	ND	ND	מא	
Indeno(1,2,3-CD) Pyrene	10	ND	ND	MD	
ISOPHORONE	10	ND	ND	ND	
Haphtealene	10	ND	ND	ND	
HITROBENZENE	10	ND	MD	ND	
N-HITROSODIMETHYLAMINE	10	ND	MD	ND	
N-HITROSODIPHENYLAHINE	10	MD	ND	ND	
PHENANTHRENE	10	ND	ND	ND	
PYRENE	10	ND	ND	ND	
1,2,4-TRICHLOROBENZENE	10	RD	MD	ND	
		•	•	•	
SURROGATE COMPOUNDS		RCVRY	RCVRY	RCVRY	
HITROBENZENE-d5		79	57	81	
2-FLUOROBIPHENYL		62	48	71	
TERPHENYL-d14		79	63	84	

P.O. BOX 5351 v Santa fre, New Mexico 875.03 - out of state 8007545-2188 v FAX - 아니아 아니아

Dames & Moore

11701 Borman Drive, Suite 340

Saint Louis, MO 43146

Attn: Dave Purington

Hork ID: Environmental

P D # : 19943-002

Centified By:

Date Received:

04/16/90

Date Reported:

05/16/90

Hork Order:

90-04-263

Category:

DAMES & MOORE

MAY 22 1990

ST. LOUIS. MISSOURI

CEP, Inc. REPORT Work Order # 90-04-253 Page Results by Sample 04/16/90 Received: NAME Gross Alpha/Beta SAMPLE ID BIA TEST CODE AB S FRACTION 01A Date & Time Collected 04/12/90 Category SOIL Type of Analysis Detection RESULT Limit pCi/g Gross Alpha **o**. 3 44. 5+/-1.8 Cross Reta 0.1 21.2+/-0.6 All results reported in: UNITS pCi/gram FRACTION 01A TEST CODE CS1375 NAME Cesium-137 SAMPLE ID BIA Date & Time Collected 04/12/90 Category SOIL Type of Analysis Detection Limit RESULT pCi/gram Cesium-137 0.14+/-0.06 0.1 All results reported in: 2T1NU pCi/qram

Page CEP, Inc. REPORT Work Order # 90-04-263 Received: 04/16/90 Results by Sample SAMPLE ID BIA FRACTION <u>O1A</u> TEST CODE <u>ISOU S</u> NAME <u>Isotopic Uranium</u> Category SOIL Date & Time Collected 04/12/90 Type of Analysis RESULT Detection Limit pCi/q Uranium-234 4. 2+/-(). 5 0.05 Uranium-235 0.05 0.6+/-0.2 Uranium-238 1.6 + / - 0.30.05 All results report in: UNITS pCi/gram SAMPLE ID BIA FRACTION 01A TEST CODE K 40 5 NAME Potassium-40 Date & Time Collected 04/12/90 Category SOIL Type of Analysis RESULT Potassium-40 11.1+/-1.4All results reported in: UNITS <u>pCi/qram</u>

that the mean the reproduced whatever are any area of the second

Page Received:	4 04	/16/90	CEP	Inc. Results by		PORT	1	Work (order i	#	90-04-2	E83
SAMPLE ID	B1A			RACTION <u>01A</u> ate & Time Col		CODE <u>R2628S</u> 04/12/90	NAME	<u>Radi</u>	um-226, Catego		· · · · · · · · · · · · · · · · · · ·	
		Type of Analysis		Detectio Limit pC		RESULT						•
		Radium-226		O. &		41.4+/-0	. 4					
		Radium-228		O. 1		<u> </u>	.1					
		A11	resul	ts report in:								
		UNIT	rs	pCi/gram							•	
SAMPLE ID	<u>B1A</u>			RACTION <u>OIA</u> ate & Time Col		CODE <u>TH2305</u> 04/12/90	NAME		um-230 Catego		SOIL	
		Type of Analysis		Detection L pCi/gra		RESULT						
		Thorium-230		0, 05		<0.	2					
		All UNIT		ts reported in <u>pCi/qram</u>	:							

The cost of the state of the st

Page

04/16/90

CEP, Inc.

REPORT

Work Order #

90-04-263

Results by Sample

SAMPLE ID BIA

Received:

FRACTION 01A Date & Time Collected 04/12/90

TEST CODE TH2325

NAME Thorium-232

Category SOIL

Type of Analysis

Detection Limit pCi/gram

RESULT

Thorium-232

0.05

0.96+/-0.18

All results reported in:

UNITS

pCi/gram

SAMPLE ID B2A

FRACTION 02A

TEST CODE AB S

NAME Gross Alpha/Beta

Date & Time Collected 04/12/90

Category SOIL

Type of Analysis

Detection Limit pCi/g RESULT

Gross Alpha

0.3

199.1+/-2.4

Gross Reta

0.1

34. 5+/-0. 5

All results reported in:

UNITS

pCi/qram

Page Received:	6 04/16/90	CEP, Inc. Results	REPORT by Sample	Work Order #	90-04-263
SAMPLE ID	B2A	FRACTION <u>024</u> Date & Time	A TEST CODE <u>CS137</u> Collected <u>04/12/90</u>		ry <u>SOIL</u>
	Type of Analysi		on Limit RESULT /gram		•
	Cesium-137	O .	1	<u><0. 1</u>	
		All results reported			
SAMPLE ID	B2A	FRACTION <u>024</u> Date & Time	TEST CODE <u>1900</u> Collected <u>04/12/90</u>	S NAME <u>Isotopic Ura</u> Categor	
	Type of Analysi		tion RESULT : pCi/g		
	Uranium-234 Uranium-235 Uranium-238	O.	05	<u>-0. 1</u>	

All results report in:

UNITS <u>pCi/qram</u>

Page (eceived:		/16/90	CEP	, Inc. Results b		ORT	Wor	k Order #	90-04-263
SAMPLE ID	<u>B2A</u>	<u>-</u>		FRACTION <u>02A</u> Date & Time Co		CODE <u>K 40 5</u> 04/12/90	NAME <u>Po</u>	tassium-40 Category	SOIL SOIL
		Type of Analysis		RESULT				·	•
		Potassium-40			3. 2+7-3.	<u>3</u>			
		A11	resu	ults reported :	.n:				
		UNI	rs _	pCi/gram					•
SAMPLE ID	B2A			FRACTION <u>O2A</u> Date & Time Co		CODE <u>R2628S</u> 04/12/90	NAME <u>Rac</u>	<u>lium-226/22</u> Category	
		Type of Analysis		Detecti Limit p		RESULT			
		Radium-226		0.		132+/	<u>-8</u>		
		Radium-228		0. 1		150+/-	<u>38</u>		

All results report in:

UNITS <u>pCi/gram</u>

The first section of the control of

Page Received:	8 04/16/90	CEP	, Inc. Results by S	REPORT Bample	l	Vork Order #	90-04-263
SAMPLE ID		-	FRACTION <u>O2A</u> Date & Time Col	TEST CODE <u>TH</u> Lected <u>04/12/9</u>		<u>Thorium-230</u> Category	SOIL
	Type of	Analysis	Detection La pCi/grad				•
	Thorium-	-230	0. 05	·	<0. 2		
		All res	ults reported in:				
		UNITS	pCi/gram				•
SAMPLE ID	B2A		FRACTION <u>02A</u> Date & Time Coll	TEST CODE <u>TH2</u> ected <u>04/12/9</u>		Thorium-232 Category	SOIL
	Type of	Analysis	Detection Li pCi∕graπ				
	Thorium-	-232	0. 05	1.3	3+/-0 <u>.5</u>		
		All res	ults reported in:				
		UNITS .	pCi/gram				

ITRSL Dat Ridge REPO 05/15/90 15:53:05 REPORT Work Order # 50-04-048 Page 1 Received: 04/13/90 REPORT DAMES & MOORE PREPARED IT/RADIOLOGICAL SCIENCES LAB. TO 11701 BORMAN DRIVE BY 1550 BEAR CREEK ROAD DAK RIDGE, TN 37831 SUITE 340 CERTIFIED BY ST. LOUIS, MD 63146 ATTEN DAVID PURINGTON ATTEN ERS PHONE 615-482-9707 CONTACT JIM DILLARD SAMPLES 19 CLIENT DAMES ST CCHPANY DAMES & HOORE FACILITY ST. LOUIS, MO WORK ID SUIL SAMPLES TAKEN TRANS TYPE P. O. # INVOICE under separate cover SAMPLE IDENTIFICATION TEST CODES and NAMES used on this report GALPHA GROSS ALPHA GBETA GROSS BETA CAMMA SPEC es__ RA226 RA-226 RA229 RA-228 TH228 TH-228 TH230 TH-230 TH232 TH-232 U234 U-234 U-235/236 <u>V235</u> N538 N-538 15 92-4

19 BE-C 19 BE-C

Page 1 ITRSL Cak Ridge REFORT Work Order # 50-04-048 Received: 04/13/90 Results by Sample

SAMPLE ID <u>Si</u>

PRACTION 01A TEST CODE 9S NAME 24MMA SPEC
Date & Tide Collected 04/12/90 Category

UNITS oci/a WRTN 05/15/90 VERIFIED 3Y ERS

GAMMA SPEC	REBULT	2-SIGMA	OT-ER	RESULT	E-EIGMA
X-40	1. 77E+1	0. 36E+1	GROSS ALPHA	3. 21E+1	1. 18E+1
CS-137	CZ_ 0E-1		GROSS BETA	2. 47E÷!	1. 1CE+1
RA-225	1. 18E+)). 14E+0	IJ-2 <u>2</u> 4	1. 01E+0	0.255-0
RA-228	1. 242+0	0. 2áE÷0	U-209/205	(6. CE-1	
			U-238	3. 24E-!	2. 30E-1
			TH-230	1. 28E+0	0. 32E+0
•			114-555	1. 02E+0	0. 275+0

SAMPLE ID 92 FRACTION ODA TEST CODE PS NAME <u>DAMMA SPEC</u>

Date & Time Dullected <u>04/12/39</u> Dategory _______

LMITE <u>aCi/a</u> WATN 05/15/90 VERIFIED BY ERS

GAMMA SPEC	RESILT	2 -3 1674	OTHER	REBULT	2-SIGMA
% -4 0	5. 12E+0	0. 75E+0	GROSS ALPHA	1. 74E÷1	0.77E+1
RA-226	1.1EE+0	0. 12E+0	GROSS BETA	2. 57E+1	0. 91E÷1
RA-228	1. 29E+I)	0.16E+G	U-234	9. 515-1	2. 69E-1
CS-127	6. 95E-2	3. 545-5	V-225/226	<6.0E−1	
			U-238	1.07E+0	0. 29E÷0
			TH-230	2. 255+6	0. +0E+0
			TH-232	1.17E+0	0. 255+0

Page 2 Received: 04/13/90

ITRSL Oak Ridge REPORT
Results by Sample

Work Order # 50-04-048

SAMPLE ID S3

FRACTION O3A TEST CODE GS NAME GAMMA SPEC
Date & Time Collected 04/12790 Category

Categorg

UNITS pCi/q WRTN 05/15/90

VERIFIED BY RDJ

CAMMA SPEC	RESULT	2-Sigma	OTHER	RESULT	2-SIGMA
K-40	1. 02E+1	0. 14E+1	CROSS ALPHA	2. 32E+1	0. 91E+1
CS-137	C2_0E-1		CROSS BETA	1.79E+1	0.76E+1
RA-226	7. 83E-1	0. 24 E-1	U-234	7. 46E-1	1.91E-1
RA-228	5.86E-1	1.02E-1	U-235/236	C6. 0E-1	
			V-238	7. 82E-1	1. 96E-1
			TH-230	2. 55E+0	0. 44E+0
			T11_222	7 055-1	1 815-1

SAMPLE ID S4

FRACTION 04A TEST CODE 9S NAME GAMMA SPEC
Date & Time Collected 04/12/90 Catego

UNITS pCi/q_ HRTN 05/15/90 VERIFIED BY ERS

CAMMA SPEC	RESULT	2-SICMA	OTHER	RESULT	2-SIGMA
K-40 CS-137 RA-226	1. 09E+1 CO. 2 1. 18E+0	0. 15E+1 0. 11E+0	CROSS ALPHA CROSS BETA U-234	2. 19E+2 2. 73E+1 1. 06E+0	0. 50E+2 0. 94E+1 0. 28E+0
RA-228	1. 26E+0	0.16E+0	U-235/234 U-238 TH-230 TH-232	6. 38E-1 2. 38E+0 1. 08E+0	2. 10E-1 0. 49E+0 0. 29E+0

Page 3 Received: 04/13/90

ITRSL Car Ridge REPORT Work Order # 50-04-048 Results by Sample

SAMPLE ID C1

FRACTION OSA TEST CODE GS NAME GAMMA SPEC
Date & Time Collected 04/12/90 Catego

Category __

UNITS pCi/q WRTN 05/15/90 VERIFIED BY RDJ

GANMA SPEC	RESULT	2-Sigma	OTHER	RESULT	2-SIGMA
K-40	1. 01E+1	0. 14E+1	CROSS ALPHA	1. 50E+1	0. 71E+1
CS-137	C2_0E-1		GROSS BETA	2.55E+1	1. 01E+1
RA-226	1.06E+0	0.11E+0	U-234	9. 51E-1	2.80E-1
RA-228	1. 22E+0	0.16E+0	U-235/236	<6.0E-1	
			U-238	9. 51E-1	2.80E-1
			TH-230	2. 22E+0	0. 45E+0
			TH-232	1 32E+0	0. 32E+0

SAMPLE ID C2

FRACTION <u>O&A</u> TEST CODE <u>GS</u> NAME <u>GAMMA SPEC</u>

Date & Time Collected <u>94/12/70</u> Category ____

UNITS pCi/q WRTN 05/15/90

CAMMA SPEC	RESULT	2-SIGNA	OTHER	RESULT	2-SIGMA
K-40	1. 82E+1	0. 29E+1	CROSS ALPHA	1. 84E+1	0. 82E+1
CS-137 RA-226	C2_0E-1 1. 15E+0	0. 12E+0	Cross Beta U-234	2. 1SE+1 1. 02E+0	0. 98E+1 0. 24E+0
RA-228	1. 29E+0	0. 18E+0	V-235/236	C6. 0E-1	
			U-238	7.65E-1	2 01E-1
			TH-220	2. 37E+0	0. 43E+0
			TH-222	1.22E+0	0. 27E+0

Page 4
Received: 04/13/90

ITRSL Dat Ridge REPORT Results by Sample

Work Order # 50-04-048

SAMPLE ID UB-1

FRACTION 07A TEST CODE GS NAME CAMMA SPEC
Date & Time Collected 04/12/90 Category

UNITS pCi/q WRTN 05/15/90

VERIFIED BY RDJ

1	GAMMA SPEC	RESULT	2-Signa	OTHER	RESULT	2-SIGMA
ļ	K-40	9. 91E+0	1. 36E+0	GROSS ALPHA	2. 36E+1	0. 99E+1
1	CS-137	2. 97E-1	0. 55E-1	GROSS BETA	2. 35E+1	0. 85E+1
-	RA-226	1. 02E+0	0. 10E+0	U-234	1. 27E+0	0. 25E+0
	RA-228	1. 11E+0	0. 14E+0	U-235/236	<6.0E-i	
				U-238	1. 04E+0	0. 22E+0
				TH-230	2. 53E+0	0.50E+0
				TH-232	9. 85E-1	2. 62E-1

SAMPLE ID UB-2

FRACTION CEA TEST CODE GS NAME GAMMA SPEC
Date & Time Collected 04/12/90 Catego

UNITS pCi/q WRTN 05/15/90

CAMMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGMA
K-40 CS-137 RA-226 RA-228	1. 17E+1 3. 05E-1 1. 15E+0 1. 22E+0	0. 16E+1 0. 59E-1 0. 11E+0 0. 15E+0	CROSS ALPHA CROSS BETA U-234 U-235/236	2. 60E+1 3. 00E+1 1. 22E+0 <6. 0E-1	1. 01E+1 1. 11E+1 0. 25E+0
			U-238 TH-230 TH-232	1. 22E+0 1. 83E+0 1. 16E+0	0. 25E+0 0. 43E+0 0. 33E+0

Page 5 Received: 04/13/90

ITRSL Oak Ridge REPORT
Results by Sample

Work Order # 50-04-048

SAMPLE ID UB-3

FRACTION 09A TEST CODE GS NAME CAPMA SPEC Date & Time Collected 04/12/90 Category

UNITS pCi/q WRTN 05/15/90 VERIFIED BY RDJ

GAMMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGMA
K-40	1. 46E+1	0. 19E+1	CROSS ALPHA	2. 58E+1	1. 01E+1
CS-137	2.43E-1	0. 58E-1	CROSS BETA	3. 11E+1	1.09E+1
RA-226	1.16E+0	0.11E÷0	U-234	9. 10E-1	1.98E-1
RA-228	1.22E+0	0.1&E+0	U-235/226	<b. ce-1<="" td=""><td></td></b.>	
			U-238	9. 24E-1	2.00E-1
			TH-230	2 23E+0	0. 46E+0
			TH-232	1. 18E+0	0.30E+0

SAMPLE ID UB-4

FRACTION 1GA TEST CODE GS NAME GAMMA SPEC
Data & Time Collected 04/12/70 Catego

UNITS pCi/q WRTN 05/15/90

CANNA SPEC	RESULT	2-Sigma	OTHER	RESULT	2-SIGMA
K-40	1. 77E+1	0. 29E+1	GROSS ALPHA	2 00E+1	0. 85E+1
CS-137	CZ_ 0E-1		CROSS BETA	2.90E+1	0. 99E+1
RA-226	1.07E+0	0.12E+0	U-234	9. 52E-1	2.11E-1
RA-228	1.35E+0	0. 20E+0	U-235/236	Cb. 0E-1	
			V-238	7. 38E-1	1.82E-1
			TH-230	2 11E+0	0.42E+0
			TH-232	1.07E+0	0.27E+0

Page 6 Received: 04/13/90

ITRSL Dat Ridge Results by Sample

REPORT

Work Order # 50-04-048

SAMPLE ID UB-5

FRACTION 11A TEST CODE GS NAME GAMMA SPEC Date & Time Collected 04/12/90 Categ

Category

UNITS pCi/q WRTN 05/15/90 VERIFIED BY RDJ

CAMMA SPEC RESULT 2-SIGMA OTHER RESULT 2-SIGMA K-40 1. 86E+1 0. 30E+1 GROSS ALPHA 1. 83E+1 0. 83E+1 GROSS BETA 2.56E+1 0.97E+1 CS-137 C2. 0E-1 RA-226 1.14E+0 0.13E+0 U-234 1. 27E+0 0. 26E+0 RA-228 1.55E+0 0.22E+0 U-235/236 <6.0E-1 N-538 9. 71E-1 2. 17E-1 TH-230 3. 06E+0 0. 55E+0 TH-232 1, 64E+0 0, 42E+0

SAMPLE ID UB-6

. •

; -

FRACTION 12A TEST CODE GS NAME GAMMA SPEC Data & Time Collected C4/12/90 Catago

Catagory

UNITS pCi/q WRTN 05/15/90

CAMMA SPEC	RESULT	2-Signa	OTHER	RESULT	2-SIGMA
K-40	1. 97E+1	0. 32E+1	CROSS ALPHA	2.75E+1	0. 99E+1
CS-137	2 1Œ-1	0. 54E-1	CROSS BETA	2. 51E+1	0. BOE+1
RA-266	1.23E+0	0.14E+0	U-234	1. 19E+0	0. 27E+0
RA-228	1.52E+0	0. 21E+0	U-235/236	C6. 0E-1	
			U-238	1.16E+0	0. 26E+0
			TH-230	2 52E+0	0. 52E+0
			TH-232	1. 23E+0	0. 32E+0

ITRSL Dat Ridge REPORT Page 7 Work Order # 50-04-048 Received: 04/13/90 Results by Sample FRACTION 13A TEST CODE 6S NAME CAMMA SPEC Date & Time Collected 04/12/90 Categ SAMPLE ID B1-A Category VERIFIED BY RDJ UNITS pCi/q WRTN 05/15/90 CAMMA SPEC RESULT 2-SIGMA OTHER RESULT 2-SIGMA 1. 24E+1 0. 22E+1 GROSS ALPHA 1. 65E+3 0. 34E+3 K-40 CS-137 C2. 0E-1 CROSS BETA 3. 13E+2 0. 66E+2 RA-226 3. 95E+1 0. 33E+1 U-234 7. 91E+0 1. 03E+0 9. 59E-1 3. 40E-1 U-235/236 RA-228 C6. 0E-1 V-238 6. 90E+0 0. 92E+0 TH-200 1. 58E+3 0. 37E+3 TH-232 5. 09E+0 1. 59E+0 FRACTION 14A TEST CODE GS NAME GAMMA SPEC Date & Time Collected 04/12/50 Category SAMPLE ID B1-9 UNITS pCi/q VERIFIED BY RDJ WRTN 05/15/90 CAMMA SPEC RESULT 2-SIGMA OTHER RESULT 2-SIGMA K-40 6. 78E+0 1. 45E+0 GROSS ALPHA 1. 98E+3 0. 40E+3 CS-137 (Z. 0E-1 CROSS BETA 3. 04E+2 0. 64E+2 6. 33E+0 1. 06E+0 RA-226 2. 96E+1 0. 45E+1 U-234 RA-228 9. 55E-1 2. 97E-1 U-235/236 C6. 0E-1 V-238 6. 33E+0 1. 06E+0 TH-220 1. 39E+3 0. 27E+3

TH-232

4. 11E+0 1. 12E+0

Page B Received: 04/13/90

ITRSL Cak Ridge REPORT Work Order * SO-04-048
Results by Sample

SAMPLE ID BI-C

FRACTION 15A TEST CODE GS NAME GAMMA SPEC
Date & Time Collected 04/12/90 Category

UNITS pci/q_ WRTN 05/15/90 VERIFIED BY RDJ

GANNA SPEC	RESULT	2-SIGMA	on-er	RESULT	2-SIGMA
K-40	1. 16E+1	0. 20E+1	CROSS ALPHA	1. 81E+3	0. 37E+3
CS-137	3. 21E-1	0. 90E-1	CROSS BETA	2 74E+2	0. 58E+2
RA-226	2. 40E+1	0. 37E+1	U-234	7. 44E+0	1.04E+0
RA-228	1.29E+0	0. 24E+0	U-235/236	<6.0E−1	
			U-238	7. CCE+0	0. 99E+0
			TH-230	1.43E+3	0. 3EE+3
			Tu-222	T TOETU	2 155-0

SAMPLE ID BZ-A

FRACTION 16A TEST CODE GS NAME GAMMA SPEC Date & Time Collected 04/12/50 Catago

UNITS pCi/q WRTN 05/15/90

CAMMA SPEC	RESULT	2-SIGYA	OTHER	RESULT	2-SIGMA
K-40	9. 40E+0	1. B3E+0	CROSS ALPHA	7. 81E+3	1. 57E+3
CS-137	C2_0E+1		GROSS BETA	9. 69E+2	1. 97E+2
RA-226	1. 51E+1	0. 19E+1	V-234	1.80E+1	0. 24E+1
RA-228	1. 25E+0	0.36E+0	U-235/236	2. 13E+0	0. 44E+0
			U-228	1. 14E+1	0. 16E+1
			TH-230	3.72E+3	0. 7EE+3
			TH-232	4. 53E+0	1.31E+0

Page 8 Received: 04/13/90

ITRSL Cak Ridge REPORT Work Order # S0-04-048
Results by Sample

SAMPLE ID B1-C

FRACTION 15A TEST CODE GS NAME GAMMA SPEC
Date & Time Collected 04/12/90 Category

UNITS pCi/g WRTN 05/15/90 VERIFIED BY RDJ

CAMMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGMA
K-40	1. 16E+1	0. 20E+1	GROSS ALPHA	1. B1E+3	0. 37E+3
CS-137	3. 21E-1	0.90E-1	GROSS BETA	2.74E+2	0. 58E+2
RA-226	2. 40E+1	0. 37E+1	U-234	7. 44E+0	1. 04E+0
RA-229	1. 29E+0	0. 24E+0	U-235/236	Cá. 0E-1	
			U-238	7. 00E+0	0. 99E+0
			TH-230	1. 4GE+3	0. 3&E+3
			TH-232	6.69E+0	2. 15E+0

SAMPLE ID BE-A

FRACTION 16A TEST CODE GS NAME GAMMA SPEC
Date & Time Collected 04/12/50 Catagory

UNITS pci/q WRTN 05/15/90

CAMMA SPEC	RESULT	2-Sigya	OTHER.	RESULT	2-SIGMA
K-40	9. 40E+0	1. B3E+0	CROSS ALPHA	7. 81E+3	1. 57E+3
CS-137	C2. 0E+1		GROSS BETA	9. 69E+2	1.97E+2
RA-226	1. 51E+1	0. 19E+1	U-234	1.80E+1	0. 24E+1
RA-228	1.25E+0	0. 36E+0	U-235/236	2 13E+0	0. 44E+0
			U-228	1. 14E+1	0. 16E+1
			TH-230	3.72E+3	0. 7EE+3
			TH-222	4. 53E+0	1. 31E+0

Page 9 Received: 04/13/90

ITRSL Dak Ridge REPORT Results by Sample

Work Order # 50-04-048

SAMPLE ID B2-B

FRACTION 17A TEST CODE GS NAME GAMMA SPEC
Date & Time Collected 04/12/90 Category

Category _

UNITS pCi/q WRTN 05/15/90 VERIFIED BY RDJ

GAMMA SPEC	RESULT	2-Sigma	OTHER	RESULT	2-SIGMA
K-40	9. 18E+0	1. 72E+0	CROSS ALPHA	5. 56E+3	1. 12E+3
CS-137	C2. 0E-1		GROSS BETA	7.76E+2	1. 59E+2
RA-226	5. 93E+1	0, 47E+1	U-234	1. 13E+1	0. 15E+1
RA-228	1. 16E+0	0. 31E+0	U-235/236	C6. 0E-1	
			U-238	6. 53E+0	0. 92E÷0
			TH-230	2. 82E+3	0. 58E+3
			TH-232	1. 31E+1	0. 30E+1

SAMPLE ID <u>B2-0</u>

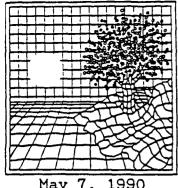
FRACTION 18A TEST CODE 9S NAME GAMMA SPEC Date & Time Collected 04/12/90 Catego

UNITS pCi/q WRTN 05/15/90

GAMMA SPEC	RESULT	2-SICYA	OTHER	RESULT	2-SIGMA
K-40	9. 53E+0	1. 61E+0	CROSS ALPHA	1. 08E+3	0. 22E +3
CS-137	C2_0E-1		CROSS BETA	1. 49E+2	0. 35E+2
RA-226	9.88E+0	1.59E+0	U-234	1. 98E+0	0. 33E+0
RA-228	9. 90E-1	1.73E-1	U-235/226	6. 61E-1	1.62E-1
			U-238	2.14E+0	0. 35E+0
			TH-230	5. 74E+2	1.13E+2
			TH-232	1.16E+0	0. 49E+0

Page 10 Received: 04/13/90

ITRSL Cak Ridge REPORT
Results by Sample


Work Order # S0-04-048

SAMPLE ID BKG

FRACTION 19A TEST CODE 9S NAME CAMMA SPEC Date & Time Collected 04/12/90 Category

UNITS pCi/q WRTN 05/15/90

GAMMA SPEC	RESULT	2-Signa	OTHER	RESULT	2-SIGMA
K-40 CS-137	1. 81E+1	0. 29E+1	GRUSS ALPHA	3. 30E+1	1. 14E+1
RA-226	C2, 0E-1 1, 09E+0	0. 12E+0	CROSS SETA U-234	2. 79E+1 1. 13E+0	0. 96E+1 0. 31E+0
RA-228	1.32E+0	0. 1EE+0	U-235/236	€6. CE-1	
			U-238	1. 11E+0	0. 31E÷0
			TH-230	3. 58E+0	0. 61E+0
			TH-222	1 54F+0	0 30F÷0

May 7, 1990

David Purington DAMES & MOORE 11701 Borman Drive, Suite 340 St. Louis, Missouri 63146

19943 - 002; Ford Earth City Project:

Dear Mr. Purington:

Enclosed are the analytical results for your samples received in our laboratory on April 17, 1990, for the above captioned project.

All the samples were originally extracted on April 17, 1990. The acid surrogates were outside QC limits for sample MW105, MW106 and MW107. These samples were re-extracted on April 26, 1990 and re-analyzed on May 1, 1990. The acid surrogates also did not meet the recovery criteria for sample MW105 and MW106. This indicated a matrix effect. We have reported the data from the reanalyses for these three sampls.

Per your request we have preformed a matrix spike and duplicate for the following samples;

MW101 (cyanide), MW105 (metals)

Additional Matrix Spike/Matrix Spike Duplicates will follow with the completion of the remaining portion of this project.

If, in your review, you should have any questions or require additional information, please call.

Sincerely,

Randy Staggs Project Manager DAMES & MOORE

MAY 08 1990

ST. LOUIS. MISSOU

RS/jl

Enclosures

1700 WEST ALBANY, SUITE C • BROKEN ARROW, OK 74012 (918) 251-2858 • FAX (918) 251-2599

ENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.01M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLO # 2388.01

DATE SUBMITTED: 04-17-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW101

= RAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
7 TAL CYANIDE	0.02	mg/L	ND	04-27-90	SM 412D
UTAL METALS					
SENIC LAD ERCURY LENIUM ALLIUM ANTIMONY RYLLIUM DMIUM MROMIUM	10.0 3.0 0.2 5.0 10.0 5.0 5.0	ug/L ug/L ug/L ug/L ug/L ug/L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	05-02-90 05-01-90 04-25-90 05-02-90 05-01-90 04-25-90 04-25-90 04-25-90	EPA 206.2 EPA 239.2 EPA 245.1 EPA 270.2 EPA 279.2 EPA 200.7 EPA 200.7 EPA 200.7
OPPER CKEL LLVER LINC	10.0 10.0 10.0 10.0	ug/L ug/L ug/L ug/L	152 ND ND 102	04-25-90 04-25-90 04-25-90 04-25-90	EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7

TPA = #EPA600/4-79-020, MARCH 1985

D = NOT DETECTED ABOVE QUANTITATION LIMIT

M = STANDARD METHOD, 16TH EDITION

1700 W. Albany • Suite "C" • Broken Arrow, Oklahoma 74012 • 918-251-2858

ENT: DAMES & MOORE

REPORT: 2388.01H

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2388.01

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EFA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW101

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	· RESULTS
2,4-D	1.0	ND
2,4,5-TP (SILVEX)	0.2	ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

85%

.) = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

SUULTWEST LABORATURI UF UIXLALIULTURA

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CL INT: DAMES & MOORE

REPORT: 2388.01P

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLD # 2388.01

DATE SUBMITTED: 04-17-90
DATE EXTRACTED: 04-17-90
DATE ANALYZED: 05-01-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW101

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEFTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 94%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT.

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

NT: DAMES & MOORE

REPORT: 2388.01V

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

NCT

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLO # 2388.01

DATE SUBMITTED: 04-17-90
DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW101

RESULTS REPORTED IN ug/L OR Parts Per Billion (FPB)

DET.				DET.	
LIMIT	RESU	<u>TS</u>	VOLATILES	LIMIT	RESULTS
10	ND		1,1,2,2-TETRACHLORDETHANE	5	ND
10	ND		1,2-DICHLOROPROPANE	5	ND
10	ND		TRANS-1,3-DICHLOROPROFENE	5	ND
10	ND		TRICHLORCETHENE	5	ND
5	18	В	DIBROMOCHLOROMETHANE	5	ND
10	5	J	1,1,2-TRICHLOROETHANE	5	ND
5	ND		BENZENE	5	ND
5	ND		CIS-1,3-DICHLOROPROPENE	5	ND
5	ND		2-CHLOROETHYLVINYLETHER	10	ND
5	ND		BROMOFORM	5	ND
5	ND		2-HEXANONE	10	ND
5	ND		4-METHYL-2-PENTANONE	10	ND
10	ND		TETRACHLOROETHENE	5	ND
5	ND		TOLUENE	5	ND
5	ND		CHLOROBENZENE	5	ND
10	ND		ETHYLBENZENE	5	ND
5	ND		STYRENE	5	ND
			TOTAL XYLENES	5	ND
	LIMIT 10 10 10 10 5 5 5 5 5 5 5 5 5 5 5	LIMIT RESULT 10 ND 10 ND 10 ND 5 18 10 5 5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 5	LIMIT RESULTS 10 ND 10 ND 10 ND 10 ND 5 18 B 10 5 J 5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 5 ND	LIMIT RESULTS VOLATILES 10 ND 1,1,2,2-TETRACHLOROETHANE 10 ND 1,2-DICHLOROPROPANE 10 ND TRANS-1,3-DICHLOROPROPENE 10 ND TRICHLORCETHENE 5 18 B DIBROMOCHLOROMETHANE 10 5 J 1,1,2-TRICHLOROETHANE 5 ND BENZENE 5 ND CIS-1,3-DICHLOROPROPENE 5 ND 2-CHLOROETHYLVINYLETHER 5 ND BROMOFORM 5 ND 2-HEXANONE 5 ND 4-METHYL-2-PENTANONE 10 ND TETRACHLOROETHENE 5 ND CHLOROBENZENE 10 ND ETHYLBENZENE 10 ND STYRENE	LIMIT RESULTS VOLATILES LIMIT 10 ND 1,1,2,2-TETRACHLOROETHANE 5 10 ND 1,2-DICHLOROPROPANE 5 10 ND TRANS-1,3-DICHLOROPROPENE 5 10 ND TRICHLOROETHENE 5 5 18 B DIBROMOCHLOROMETHANE 5 10 5 J 1,1,2-TRICHLOROETHANE 5 5 ND BENZENE 5 5 ND CIS-1,3-DICHLOROPROPENE 5 5 ND 2-CHLOROETHYLVINYLETHER 10 5 ND BROMOFORM 5 5 ND 2-HEXANONE 10 10 ND TETRACHLOROETHENE 5 5 ND CHLOROBENZENE 5 5 ND CHLOROBENZENE 5 5 ND CHLOROBENZENE 5 5 ND CHLOROBENZENE 5 5 ND STYRENE 5

QA/QC SURROGATE RECOVERIES

.IOLUENE-d8(88-110) 97% BROMOFLUOROBENZENE(86-115) 93% 1,2-DICHLOROETHANE-d4(76-114) 97%

MD = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

- = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

:S & MOORE . REPORT: 2388.018
70 BORMAN DRIVE, SUITE 340

LUIS, MO 63146 DATE: 05-07-90 PURINGTON

#F : MATRIX: WATER DATE SUBMITTED: 04-17-90

T # 2388.01 DATE EXTRACTED: 04-17-90
PREF.: SW846-8270. EPA METHODOLOGY DATE ANALYZED: 04-26-90

OC :T: 19943 - 002; FORD EARTH CITY

DATE ANALYZED: 04-26-90

₫ : ID: MW101

ŧĘ.

-		DET.	RESULTS	•	DET.	RESULTS
7	LATILES	LIMIT	(uq/L)	<u>SEMIVOLATILES</u>	LIMIT	(ug/L)
1						
~	•	10	ND	ACENAPHTHENE	10	ND
31	·CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
	JROPHENOL	10	ND	4-NITROPHENOL	50	ND
	TCHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
4	CHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
<u>એ</u>	. ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
)ICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
	1YLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
S	-CHLOROISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
· —; 1	HYLPHENOL	10	ND	4-NITROANILINE	50	ND
<u>.</u> 	ROSQ-DI-n-PROFYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
	HLOROETHANE	10	ND	N-NITROSODIFHENYLAMINE(1)	10	ND
	BENZENE	10	ND	4-9ROMOPHENYL-PHENYLETHER	10	ND
154	ORGNE	10	ND	HEXACHLOROBENZENE	10	ND
-19	ROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
4	IMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
:[DIC ACID	50	ND	ANTHRACENE	10	ND
· •	-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
, 4	ICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
ے ہد	-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
11.7	HALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
· C	DROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
: <u>X</u> -,	ALOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
ИI	ORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
· 	HYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
ΞX	HLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
ے رہے۔	-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
	-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
-ฉี	ORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
<u>-NI</u>]	ROANILINE	50	ND	INDENO(1,2,3-CD)FYRENE	10	ND
<u>'</u>	THYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
٦٢.	PHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
	ROANILINE	50	ND			, , ,
		-				

GA/GC SURROGATE RECOVERIES

,	BENZENE-d	5(35-114)	55%	2-FLUOROBIPHENY	L(43-116)	51%	TERPHENYL-d14	(33-141)	68%
							2.4.6-TRIBROMOPHEN	IDL (10-123)	60%

- NOT DETECTED ABOVE QUANTITATION LIMIT
ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION
-- ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE
SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

"LIENT: DAMES & MOORE

REPORT: 2388.02M

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

DATE

METHOD

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLD # 2388.02

DATE SUBMITTED: 04-17-90

PROJECT: 19943 - 002; FORD EARTH CITY

DET.

SAMPLE ID: MW105

ARAMETER	LIMIT	UNIT	RESULTS	ANALYZED	REFERENCE
TI AL CYANIDE	0.02	mg/L	ND	04-27-90	SM 412D
AL METALS					
ARSENIC	10.0	ug/L	ND	05-02-90	EPA 206.2
C ↑D	3.0	ug/L	ND	05-01-90	EFA 239.2
₩ :CURY	0.2	ug/L	ND	04-25-90	EFA 245.1
SENIUM	5.0	ug/L	ND	05-02-90	EFA 270.2
THALLIUM	10.0	ug/L	ND	05-01-90	EPA 279.2
_ TIMONY	30.0	ug/L	ND	04-25-90	EFA 200.7
S RYLLIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
LCADMIUM	5.0	ug/L	ND	04~25~90	EFA 200.7
~~ MUIMOF	5.0	ug/L	ND	04-25-90	EPA 200.7
T PER	10.0	ug/L	7 3	04-25-90	EPA 200.7
NICKEL	10.0	ug/L	ND	04-25-90	EPA 200.7
"TILVER	10.0	ug/L	ND	04-25-90	EPA 200.7
NE	10.0	uģ/L	489	04-25-90	EPA 200.7

[&]quot; 'A = #EPA600/4-79-020, MARCH 1985

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

^{1 =} STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MOORE

REPORT: 2388.02H

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLO # 2388.02

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW105

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS
2,4-D 2,4,5-TP (SILVEX)	1.0	D D

GA/GC SURROGATE RECOVERY

2,4,5-T (10-98) 91.2%

) = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

NT: DAMES & MOORE

REPORT: 2388.02P

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2388.02

DATE SUBMITTED: 04-17-90
DATE EXTRACTED: 04-17-90
DATE ANALYZED: 05-01-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW105

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEFTACHLOR EFOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	מא
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	. 0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 65%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

L! IT: DAMES & MOORE

REPORT: 2388.02V

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

DET

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2388.02

DATE SUBMITTED: 04-17-90 DATE ANALYZED : 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

DET

SAMPLE ID: MW105

RESULTS REPORTED IN ug/L OR Parts Fer Billion (FFB)

DEI.				<i>DE.</i> 1 •	
LIMIT	RESL	<u>JLTS</u>	<u>VOLATILES</u>	LIMIT	RESULTS
10	kl?	`	1 1 2 2-TETBACUI GEGETUANE	5	ND
		_		5	* *
		-	•	3	ND
10	NI)	TRANS-1,3-DICHLOROPROPENE	5	ND
10	NI	כ	TRICHLOROETHENE	5	ИD
5	19	B	DIBROMOCHLOROMETHANE	5	ND
10	6	J	1,1,2-TRICHLOROETHANE	5	ND
5	NI	D	BENZENE	5	ND
5	NI	D	CIS-1,3-DICHLOROPROFENE	5	ND
5	N)	D	2-CHLOROETHYLVINYLETHER	10	ND
5	N	D	BROMOFORM	5	ND
5	N:	D	2-HEXANONE	10	ND
5	N	D	4-METHYL-2-PENTANONE	10	ND
10	N:	D	TETRACHLOROETHENE	5	ND
5	N:	D	TOLUENE	5	ND
5	N:	D	CHLOROBENZENE	5	ND
10	N:	D	ETHYLBENZENE	5	ND
5	N:	D .	STYRENE	5	ND
			TOTAL XYLENES	5	ND
	LIMIT 10 10 10 10 5 10 5 5 5 5 5 5 5 5 5	LIMIT RESULT 10 Ni 10 Ni 10 Ni 10 Ni 10 6 5 Ni 6 Ni 7 Ni	LIMIT RESULTS 10 ND 10 ND 10 ND 10 ND 5 18 B 10 6 J 5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 5 ND 5 ND	LIMIT RESULTS 10 ND 1,1,2,2-TETRACHLOROETHANE 10 ND 1,2-DICHLOROPROPANE 10 ND TRANS-1,3-DICHLOROPROPENE 10 ND TRICHLOROETHENE 5 18 B DIBROMOCHLOROMETHANE 10 6 J 1,1,2-TRICHLOROETHANE 5 ND BENZENE 5 ND CIS-1,3-DICHLOROPROPENE 5 ND CIS-1,3-DICHLOROPROPENE 5 ND 2-CHLOROETHYLVINYLETHER 5 ND BROMOFORM 5 ND 2-HEXANONE 5 ND 4-METHYL-2-PENTANONE 10 ND TETRACHLOROETHENE 5 ND CHLOROBENZENE 10 ND ETHYLBENZENE 5 ND STYRENE	LIMIT RESULTS VOLATILES LIMIT 10 ND 1,1,2,2-TETRACHLOROETHANE 5 10 ND 1,2-DICHLOROPROPANE 5 10 ND TRANS-1,3-DICHLOROPROPENE 5 10 ND TRICHLOROETHENE 5 5 18 B DIBROMOCHLOROMETHANE 5 10 6 J 1,1,2-TRICHLOROETHANE 5 5 ND BENZENE 5 5 ND CIS-1,3-DICHLOROPROPENE 5 5 ND CIS-1,3-DICHLOROPROPENE 5 5 ND 2-CHLOROETHYLVINYLETHER 10 5 ND BROMOFORM 5 5 ND 2-HEXANONE 10 10 ND TETRACHLOROETHENE 5 5 ND TOLUENE 5 5 ND CHLOROBENZENE 5 10 ND ETHYLBENZENE 5 5 ND STYRENE 5

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(88-110) 103% BROMOFLUOROBENZENE(86-115) 90% 1,2-DICHLOROETHANE-d4(76-114) 103%

- I : NOT DETECTED ABOVE QUANTITATION LIMIT
- = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION
 - ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE
- SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

JES & MOORE 70 BORMAN DRIVE, SUITE 340

UIS, MO 63146

N: DAVID PURINGTON

TP MATRIX: WATER

#0 # 2388.02

PT REF.: SW843-8270, EPA METHODOLOGY

DJ T: 19943 - 002; FORD EARTH CITY

MF__ ID: MW105

REPORT: 2388.028

DATE: 05-07-90

DATE SUBMITTED: 04-17-90

DATE EXTRACTED: 04-26-90

DATE ANALYZED : 05-01-90

MI PLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/L)
46	10	ND	ACENAPHTHENE	10	ND
S: -CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
£HLOROPHENOL	10	ND	4-NITROPHENOL	50	ND
3 TICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
THE ICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
INL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
12-DICHLOROBENZENE	10	ND	DIETHYLFHTHALATE	10	ND
_1 HYLFHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
IS -CHLOROISOPROPYL)ETHER	10	ND	FLUORENE ·	10	ND
-METHYLPHENOL	10	ND	4-NITROANILINE	50	ND
N ROSO-DI-n-PROFYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
EX HLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
ITRUBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
JEHORONE	10	ND	HEXACHLOROBENZENE	10	ND
- ROFHENOL	10	ND	PENTACHLOROPHENOL	10	ND
.4 _IMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
NZOIC ACID	50	ND	ANTHRACENE	10	ND
: :-CHLOROETHOXY)METHANE	10	ND	DI-N-BUTYLFHTHALATE	10	ND
, ICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
_2,4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
THALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
OROANILINE	10	מא	3,3-DICHLOROBENZIDINE	20	ND
EXACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
THIORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	2 J
_ THYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
E: CHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
_4,6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
- LORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
-NITROANILINE	50	ND	INDENG(1,2,3-CD)PYRENE	10	ND
THYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
- APHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	-10	ND
TROANILINE	50	ND	SECOND CONTRACTOR CONTRACTOR	10	מא
3		1 74			

QA/QC SURROGATE RECOVERIES

COBENZENE	-d5(35-114)	87%	2-FLUOROBIPHENYL	(43-116)	74%	TERPHENYL-d14	(33-141)	85%
10L-d5	(10-94)	17:	2-FLUOROPHENOL	(21-100)	5%×	2.4.6-TRIBROMOPHE	NOL (10-12E)	10%

^{. =} NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ FRITMATER VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

(IENT: DAMES & MODRE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.03M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLO # 2388,03

DATE SUBMITTED: 04-17-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW106

RAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
TTAL CYANIDE	0.01	mg/L	ND	04-27-90	SM 412D
- JTAL METALS					
SENIC AD MERCURY LIENIUM ALLIUM ANTIMONY TRYLLIUM ADMIUM ADMIUM TOFFER CKEL LVER	10.0 3.0 0.2 5.0 10.0 5.0 5.0 10.0 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	05-02-90 05-01-90 04-25-90 05-02-90 05-01-90 04-25-90 04-25-90 04-25-90 04-25-90 04-25-90 04-25-90	EPA 206.2 EPA 239.2 EFA 245.1 EPA 270.2 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7
ZINC	10.0	ug/L	56.4	04-25-90	EPA 200.7

 $^{^{1}}PA = \#EPA600/4-79-020, MARCH 1985$

D = NOT DETECTED ABOVE QUANTITATION LIMIT
M = STANDARD METHOD, 16TH EDITION

SOUTHWEST LABORATORY OF ORLANDINA, INC.

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MOORE

REPORT: 2388.03H

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2388.03

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW106

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS
2,4-D	1.0	ND
2,4,5-TP (SILVEX)	0.2	ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98) 9

) = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

SUUTHWEST LABORATURI OF URLAHOWA, INC.

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

NT: DAMES & MOORE

REPORT: 2388.03P

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLO # 2388.03

DATE SUBMITTED: 04-17-90
DATE EXTRACTED: 04-17-90
DATE ANALYZED: 05-01-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW106

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	D
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 70%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

NT: DAMES & MOORE

CL

REPORT: 2388.03V

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS. MO 63146

DATE: 05-07-90

ATTN: DAVID FURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2388.03

DATE SUBMITTED: 04-17-90 DATE ANALYZED : 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW106

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

- LATILES	DET. LIMIT	RESU	LTS	VOLATILES	DET. LIMIT	RESULTS
C DROMETHANE MOMETHANE INYL CHLORIDE OROETHANE	10 10 10	110 110 110 110 110)	1,1,2,2-TETRACHLOROETHANE 1,2-DICHLOROPROFANE TRANS-1,3-DICHLOROPROFENE TRICHLOROETHENE	5 5 5 5	ND ND ND
HYLENE CHLORIDE ZETONE BON DISULFIDE - DICHLOROETHENE ANS-1,2-DICHLOROETHENE COROFORM - DICHLOROETHANE BUTANONE - ,1-TRICHLOROETHANE BON TETRACHLORIDE ANYL ACETATE AMODICHLOROMETHANE	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	19 4 NE NE	DIBROMOCHLOROMETHANE 1,1,2-TRICHLOROETHANE BENZENE CIS-1,3-DICHLOROPROPENE 2-CHLOROETHYLVINYLETHER BROMOFORM 2-HEXANONE 4-METHYL-2-PENTANONE TETRACHLOROETHENE TOLUENE CHLOROBENZENE ETHYLBENZENE STYRENE TOTAL XYLENES	5 5 5 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

QA/QC SURROGATE RECOVERIES

"JLUENE-d8(38-110) 97% BROMOFLUOROBENZENE(86-115) 94% 1,2-DICHLOROETHANE-d4(76-114) 103%

- = NOT DETECTED ABOVE QUANTITATION LIMIT
- = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION
- = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE
 - = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

& MOORE 70 BORMAN DRIVE, SUITE 340

JUUIS, MO 63146 DAVID PURINGTON

REPORT: 2388.03D

DATE: 05-07-90

AL : MATRIX: WATER

2388.03

n) REF.: SW846-8270, EPA METHODOLOGY

J. IT: 19943 - 002; FORD EARTH CITY

TLE ID: MW106

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-26-90

DATE ANALYZED: 05-01-90

VOLATILES	DET. LIMIT	RESULTS (ug/L)	<u>SEMIVOLATILES</u>	DET. LIMIT	RESULTS (ug/L)
T	10	ND	ACENAFHTHENE	10	ND
<u> 3_</u> -CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENCL	50	ND
LOROPHENOL	10	ND	4-NITROPHENOL	50	ND
ICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
4 ICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
YL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
ICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
M HYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
.544-CHLOROISOPROPYL)ETHER		ND	FLUORENE	10	ND
ITHYLPHENOL	10	ND	4-NITROANILINE	50	MD
™ ROSO-DI-n-PROFYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	МD
X HLOROETHANE	10	HUD	N-NITROSODIFHENYLAMINE(1)	10	ND
OBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
. ORONE	19	ND	HEXACHLOROBENZENE	10	ND
* ROPHENOL	10	ИD	PENTACHLOROPHENOL	10	ИD
DIMETHYLPHENOL	10	ממ	PHENANTHRENE	10	ND
'CIC ACID	50	ND	ANTHRACENE	10	ND
: -CHLOROETHOXY) METHANE		ND	DI-N-BUTYLPHTHALATE	10	ND
: 2 - ICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
HALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
-(LOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
FY CHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
.ORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	27
THYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
EXACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
3-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
- 3-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
-CCORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
TROANILINE	50	ND	INDEND(1,2,3-CD)FYRENE	10	ND
THYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
3 APHTHYLENE	10	ND	BENZO(G, H, I) PERYLENE	10	ND
-MITROANILINE	50	MD	, , , , , , , , , , , , , , , , , , ,	••	

QA/QC SURROGATE RECOVERIES

OBENZENE	-d5(35-114)	87%	2-FLUOROBIPHENYL(43-116)	73%	TERPHENYL-d14	(33-141)	76%
			2-FLUOROPHENOL (21-100)			DL (10-123)	1.5%

9 NOT DETECTED AROVE QUANTITATION LIMIT _= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE SURROSATE RECOVERY OUTSIDE OF GC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

DATE: 05-07-90

REPORT: 2388.04M

SAMPLE MATRIX: WATER

SWLO # 2388.04

DATE SUBMITTED: 04-17-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW107

-ARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
TC AL CYANIDE	0.01	mg/L	ND	04-27-90	SM 412D
_(<u>al metals</u>					
ARSENIC	10.0	ug/L	ND	05-02-90	EPA 206.2
	3.0	ug/L	ND	05-01-90	EPA 239.2
-! CURY	0.2	ug/L	ND	04-25-90	EPA 245.1
SLLENIUM	5.0	ug/L	ND	05-02-90	EPA 270.2
THALLIUM	10.0	ug/L	ND	05-01-90	EFA 279.2
_ IMONY	30.0	ug/L	33.1	04-25-90	EPA 200.7
B :YLLIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
<u> </u>	5.0	ug/L	ND	04-25-90	EPA 200.7
: COMIUM	5.0	ug/L	ND	04-25-90	EFA 200.7
t PPER	10.0	ug/L	6 2	04-25-90	EPA 200.7
NICKEL	10.0	ug/L	10.9	04-25-90	EFA 200.7
T'-VER	10.0	ug/L	ND	04-25-90	EPA 200.7
- 4C	10.0	ug/L	43.0	04-25-90	EPA 200.7

 $^{^{*}}$ 'A = #EPA600/4-79-020, MARCH 1985

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

1 = STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

C__ENT: DAMES & MOORE REPORT: 2388.04H

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLO # 2388.04

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EFA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW107

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS		
2,4-D	1.0	ND		
2,4,5-TP (SILVEX)	0.2	ND		

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

89%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

| = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

NT: DAMES & MOORE

REPORT: 2388.04P

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2388.04

DATE SUBMITTED: 04-17-90
DATE EXTRACTED: 04-17-90
DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW107

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC (LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EFOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	GN
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 68%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

C_ ENT: DAMES & MOORE

REPORT: 2388.04V

11701 BORMAN DRIVE, SUITE 340

DATE: 05-07-90

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLD # 2388.04

DATE SUBMITTED: 04-17-90 DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW107

RESULTS REPORTED IN ug/L OR Parts Per Billion (FFB)

:	DET.				DET.	
*	LIMIT	RESUL	<u>.TS</u>	VOLATILES	LIMIT	RESULTS
TO DROMETHANE	1.0	ND		1,1,2,2-TETRACHLOROETHANE	5	ND
BEOMOMETHANE	10	ND		1,2-DICHLOROPROPANE	5	ND
YL CHLORIDE	10	ND		TRANS-1.3-DICHLOROPROFENE	5	ND
·= ORCETHANE	10	ND		TRICHLOROETHENE	5	ND
METHYLENE CHLORIDE	5	16	B	DIBROMOCHLOROMETHANE	5	ND
'TONE	10	3	J	1,1,2-TRICHLOROETHANE	5	ND
BON DISULFIDE	5	ND		BENZENE	5	ND
1,DICHLOROETHENE	5	ND		CIS-1,3-DICHLOROPROPENE	5	ND
· 1-DICHLOROETHANE	5	ND		2-CHLOROETHYLVINYLETHER	10	ND
NS-1,2-DICHLOROETHENE	5	ND		BROMOFORM	5	ND
ĭ⊊ .OROFÓRM	5	ND		2-HEXANONE	10	ND
1,2-DICHLOROETHANE	5	ND		4-METHYL-2-PENTANONE	10	ND
UTANONE	10	ND		TETRACHLOROETHENE	5	ND
,1-TRICHLOROETHANE	5	ND		TOLUENE	5	ND
CARBON TETRACHLORIDE	5	ND		CHLOROBENZENE	5	ND
- YL ACETATE	10	ND		ETHYLBENZENE	5	ND
MODICHLOROMETHANE	5	ND		STYRENE	5	ND
· ·				TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

-UENE-d8(88-110) 96% BROMOFLUOROBENZENE(86-115) 92% 1,2-DICHLOROETHANE-d4(76-114) 100%

- J™ = NOT DETECTED ABOVE QUANTITATION LIMIT
 - = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION
 - = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE
- 4 = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

& MOORE

BORMAN DRIVE, SUITE 340

≈ LOUIS, MO 63146

: DAVID FURINGTON

ATTLE MATRIX: WATER

7 0 # 2388.04

→ DD REF.: SW846-8270, EPA METHODOLOGY

R__ ECT: 19943 - 002; FORD EARTH CITY

TIFLE ID: MW107

REPORT: 2388.048

DATE: 05-07-90

DATE SUBMITTED: 04-17-90

DATE EVIDACTED. (

DATE EXTRACTED: 04-26-90

DATE ANALYZED : 05-01-90

EMIVOLATILES	DET. LIMIT	RESULTS (ug/L)	<u>SEMIVOLATILES</u>	DET.	RESULTS (ug/L)
ਜ OL	10	ND	ACENAPHTHENE	10	ND
:IS(2-CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
LOROPHENOL	10	ND	4-NITROPHENOL	50	ND
_ DICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
., DICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
-NZYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
F THYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
<pre>MIS(2-CHLOROISOPROPYL)ETHER</pre>		ND	FLUORENE	10	ND
: THYLPHENOL	10	ND	4-NITROANILINE	50	ND
TROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
(E.ACHLOROETHANE	10	ND	N-NITROSODIFHENYLAMINE(1)	10	ND
TROBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
_ 'HORONE	10	ИD	HEXACHLOROBENZENE	10	ND
F TROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
24-DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
IOIC ACID	50	ND	ANTHRACENE	10	ИD
≠ (2-CHLOROETHOXY)METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
2,4-DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
,4-TRICHLOROBENZENE	10	ND	FYRENE	10	ND
_ HTHALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
4 LALOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
**XACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
HLORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
ETHYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
HEXACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
,6-TRICHLOROPHENOL	10	ND	PENZO(B)FLUORANTHENE	10	ND
- ,5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
2-CHLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
'ITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
ETHYLPHTHALATE	10	ИД	DIBENZ(A,H)ANTHRACENE	10	ND
NAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
1-NITROANILINE	50	ND			=

QA/QC SURROGATE RECOVERIES

ROBENZENE-	-d5(35-114)	82%	2-FLUOROBIPHENYL ((43-116)	68%	TERPHENYL-d14	(33-141)	89%
indNOL-d5						2.4.6-TRIBROMOFHENO	DL(10-123)	51%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGHIE RECOVERY OUTSIDE OF BC LIMITS

SUUTHWEST LABORATORY OF UNLAHOWA, III.C.

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

T: DAMES & MOORE REPORT: 2388.05V 11701 BORMAN DRIVE, SUITE 340 ST. LOUIS, MO 63146 DATE: 05-07-90 ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER SWLO # 2388.05 DATE SUBMITTED: 04-17-90

DATE ANALYZED : 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: TR-1

RESULTS REPORTED IN ug/L OR Parts Fer Billion (FPB)

_	DET.					DET.	
nin:ILES	LIMIT	R	ESUL	.TS	VOLATILES	LIMIT	RESULTS
기 제 KOMETHANE	10		ND		1,1,2,2-TETRACHLOROETHANE	5	ND
RI IMETHANE	10		ND		1,2-DICHLOROPROPANE	5	ND
NYL CHLORIDE	10		ND		TRANS-1,3-DICHLOROPROPENE	5	ND
→ ROETHANE	10		ND		TRICHLOROETHENE	5	ND
E YLENE CHLORIDE	5	2		J	DIBROMOCHLOROMETHANE	5	ND
-TONE	10		ND		1,1,2-TRICHLOROETHANE	5	ND
hron disulfide	5		ND		BENZENE	5	ND
, DICHLOROETHENE	5		ND		CIS-1,3-DICHLOROPROFENE	5	ND
DICHLOROETHANE	5		ND		2-CHLOROETHYLVINYLETHER	10	ND
ANS-1,2-DICHLOROETHENE	5		ND		BROMOFORM	5	ND
- ROFORM	5	6		B	2-HEXANONE	10	ND
, DICHLOROETHANE	5		ND		4-METHYL-2-FENTANONE	10	ND
PUTANONE	10		ND		TETRACHLOROETHENE	5	ND
1-TRICHLOROETHANE	5		ND		TOLUENE	5	ND
A ON TETRACHLORIDE	5		ND		CHLOROBENZENE	5	ND
INYL ACETATE	10		ND		ETHYLBENZENE	5	ND
PMODICHLOROMETHANE	5		ND		STYRENE	5	ND
-					TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

FLUENE-d8(88-110) 97% BROMOFLUOROBENZENE(86-115) 93% 1,2-DICHLOROETHANE-d4(76-114) 102%

^{₾ =} NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SURROGATE RECOVERY OUTSIDE OF GC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ANALYTICAL REPORT

T DAMES & MOORE

11701 Borman Drive

St. Louis. Missouri 63149

REPORT: G2705

REPORT DATE: 05/03/90

SWLO IDENTIFICATION

~

SAMPLE NO.: 2388.01 - 2388.05 DATE RECEIVED: 04/17/90

QA/QC

- 1	DESCRIPTION		PARAMETER	RESULTS	
, f	METHOD BLANK METHOD BLANK	04/25/90	BERYLLIUM	<30 <5	ug/L ug/L
-	METHOD BLANK METHOD BLANK			<5 <5	ug/L ug/L
ſ	METHOD BLANK METHOD BLANK	04/25/90		<10 <10	ug/L ug/L
-	METHOD BLANK		SILVER	<10	ug/L
	METHOD BLANK	04/25/90	ZINC	<10	ug/L
-	BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE	04/25/90 04/25/90 04/25/90 04/25/90 04/25/90 04/25/90 04/25/90	ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER NICKEL SILVER	102% 100% 115% 98% 104% 99% 86%	RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY
, -	BLANK SPIKE	04/25/90	ZINC	110%	RECOVERY
, ,	MATRIX SPIKE ARTIX SPIKE ATRIX SPIKE MATRIX SPIKE IATRIX SPIKE IATRIX SPIKE MATRIX SPIKE MATRIX SPIKE MATRIX SPIKE	MW105 MW105 MW105 MW105 MW105 MW105	ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER NICKEL SILVER ZINC	98% 107% 99% 86% 110%	RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY
	OUPLICATE DUPLICATE OUPLICATE DUPLICATE DUPLICATE OUPLICATE OUPLICATE OUPLICATE	MW101 MW101 MW101 MW101 MW101 MW101 MW101	ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER NICKEL SILVER ZINC	0% 0% 0% 0% 17% 0% 0% 24%	RPD RPD RPD RPD RPD RPD RPD RPD

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ANALYTICAL REPORT

DAMES & MOORE 11701 Borman Drive St. Louis. Missouri 63149 REPORT: G2705.2

REPORT DATE:

05/03/90

- SWLO IDENTIFICATION

SAMPLE NO.:

2388.01 - 2388.05

DATE RECEIVED: 04/17/90

QA/QC

DESCRIPTION		PARAMETER	RESULTS	
METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK	05/01/90 05/02/90 05/01/90	LEAD SELENIUM THALLIUM	<10 <3 <5 <10 <.01	ug/L ug/L ug/L ug/L mg/L
	04/30/90 04/30/90 05/01/90 05/01/90 05/02/90 05/02/90 05/01/90 05/01/90	ARSENIC ARSENIC LEAD LEAD SELENIUM SELENIUM THALLIUM THALLIUM	101% 81% 99% 98% 98% 98% 98% 95%	RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY
MATRIX SPIKE MARTIX SPIKE MATRIX SPIKE MATRIX SPIKE MATRIX SPIKE DUPLICATE DUPLICATE	MW107 MW107 MW107	ARSENIC LEAD SELENIUM THALLIUM TOTAL CYANIDE ARSENIC LEAD	96% 64% 70% 110% 104%	RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RPD RPD
DUPLICATE DUPLICATE DUPLICATE	MW101 MW106 MW101	SELENIUM THALLIUM TOTAL CYANIDE	0% 0% 0%	RPD RPD RPD

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

_IENT: DAMES & MOORE

REPORT: G2705.3

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER SWLO # METHOD BLANK

DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EFA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/L OR Parts Per Billion

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

81.7%

D = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

I IENT: DAMES & MOORE

REPORT: G2705.4

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER SWLO # METHOD BLANK

DATE EXTRACTED: 04-17-90
DATE ANALYZED: 05-01-90

METHOD REFERENCE: SW846-8080, EFA METHODOLOGY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
A1 511A 511B		. 15
ALFHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	, ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEFTACHLOR EFOXIDE	0.05	ND
ENDOSULFAN I	0.05	11D
DIELDRIN	0.1	МD
4,4-DDE	0.1	ND
ENDRIN	0.1	MD
ENDOSULFAN II	0.1	MD
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 135%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

[ENT: DAMES & MOORE

REPORT: G2705.5

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER
SWLO # METHOD BLANK

DATE ANALYZED : 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/L OR Parts Fer Billion (PFB)

_ATILES	DET. LIMIT	RESULTS	<u>VOLATILES</u>	DET. LIMIT	RESULTS
HLOROMETHANE	10	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
DMOMETHANE	10	ИD	1,2-DICHLOROPROPANE	5	ND
NYL CHLORIDE	10	HD	TRANS-1,3-DICHLOROPROPENE	5	ИD
HLOROETHANE	10	NID	TRICHLOROETHENE	5	11D
- THYLENE CHLORIDE	5	10	DIBROMOCHLOROMETHANE	5	ND
ETONE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
ARBON DISULFIDE	5	ND	BENZENE	5	ND
_ 1 1-DICHLOROETHENE	5	ND	CIS-1,3-DICHLOROPROPENE	5	ЫD
1-DICHLOROETHANE	5	ND	2-CHLOROETHYLVINYLETHER	10	ND
ANS-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
HLOROFORM	5	ND	2-HEXANONE	10	ND
2-DICHLOROETHANE	5	ND	4-METHYL-2-PENTANONE	10	ND
BUTANONE	10	ND	TETRACHLOROETHENE	5	ND
7,1,1-TRICHLOROETHANE	5	ND	TOLUENE	5	ND
_ RBON TETRACHLORIDE	5	ND	CHLOROBENZENE	5	ND
NYL ACETATE	10	ND	ETHYLBENZENE	5	ND
-, OMODICHLOROMETHANE	5	ND	STYRENE	5	ND
I			TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

LUENE-d8(88-110) 100% BROMOFLUOROBENZENE(86-115) 86% 1,2-DICHLOROETHANE-d4(76-114) 95%

- = NOT DETECTED ABOVE QUANTITATION LIMIT
- = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION
- = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE
- = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

_ S & MOORE

REPORT: G2705.6

11 1 BORMAN DRIVE, SUITE 340

೭. LOUIS, MO 63146

'TN: DAVID FURINGTON

DATE: 05-07-90

34 LE MATRIX: WATER TILO # METHOD BLANK

DATE EXTRACTED: 04-17-90

_ OD REF.: SW846-8270, EPA METHODOLOGY

DATE ANALYZED : 04-26-90

of ECT: 19943 - 002; FORD EARTH CITY

-MPLE ID: METHOD BLANK

= SEVOLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/L)
- 10L	10	ND	ACENAPHTHENE	10	ND
3: 2-CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
- CHLOROPHENOL	10	ND	4-NITROFHENOL	50	ND
DICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
I -DICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
MENZYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
?-DICHLOROBENZENE	10	MD	DIETHYLPHTHALATE	10	ND
2. THYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
311,2-CHLOROISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
METHYLPHENOL	10	ИD	4-NITROANILINE	50	ND
[TROSO-DI-n-PROFYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
. # ACHLOROETHANE	10	ИD	N-NITROSODIFHENYLAMINE(1)	10	ND
TROBENZENE	10	ИD	4-PROMOPHENYL-PHENYLETHER	10	11D
THURONE	10	ИD	HEXACHLOROBENZENE	10	ND
T ITROPHENOL	10	ND	PENTACHLOROPHENOL	10	ЫD
2.4-DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	F1D
NZOIC ACID	50	ND	ANTHRACENE	10	ND
<pre>_ (2-CHLOROETHOXY)METHANE</pre>	10	ND	DI-N-BUTYLPHTHALATE	10	ND
2 -DICHLOROFHENOL	10	ND	FLUORANTHENE	10	ND
-2,4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
HTHALENE	10	ИD	BUTYLBENZYLPHTHALATE	10	ND
4 HLOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
<u>HEXACHLOROBUTADIENE</u>	10	ND	BENZO(A)ANTHRACENE	10	ND
CHLORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
- ETHYLNAFHTHALENE	10	ND	CHRYSENE	10	ND
HLAACHLOROCYCLOFENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
-4,6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
,5-TRICHLOROFHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
Z HLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
2-NITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
ETHYLFHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
- NAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
3-NITROANILINE	50	ND			

QA/QC SURROGATE RECOVERIES

ROBENZENE-	d5(35-114)	62%	2-FLUOROBIPHENY	L(43-116)	55%	TERPHENYL-d14	(33-141)	77%
						2,4,6-TRIBROMOPHENO	L(10-123)	65%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

^{- =} ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

_.MES & MOORE 1 01 BORMAN DRIVE, SUITE 340

2 LOUIS, MO 63146

.N: DAVID PURINGTON

REPORT: G2705.7

DATE: 05-07-90

PLE MATRIX: WATER

_D # METHOD BLANK

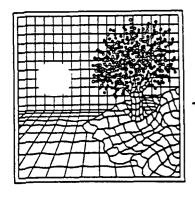
__:THOD REF.: SW846-8270, EPA METHODOLOGY

⇒ JECT: 19943 - 002; FORD EARTH CITY

- PLE ID: METHOD BLANK

DATE EXTRACTED: 04-17-90 DATE ANALYZED: 04-26-90

<u>j IVOLATILES</u>	DET. LIMIT	RESULTS (ug/L)	<u>SEMIVOLATILES</u>	DET. '	RESULTS (ug/L)
!FNOL	10	ND	ACENAPHTHENE	10	ND
3 (2-CHLOROETHYL)ETHER	10	ND	2.4-DINITROPHENOL	50	ND
- HLOROFHENOL	10	ND	4-NITROPHENOL	50	ND
3-DICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
T -DICHLOROBENZENE	10	ИD	2,4-DINITROTOLUENE	10	ND
2 ZYL ALCOHOL	10	ND	2.6-DINITROTOLUENE	10	ИD
2-DICHLOROBENZENE	10	ИD	DIETHYLFHTHALATE	10	ND
= METHYLFHENOL	10	ИD	4-CHLOROPHENYL-PHENYLETHER	10	ND
3 (2-CHLOROISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
ETHYLFHENOL	10	ND	4-NITROANILINE	50	ND
HNITROSO-DI-n-PROFYLAMINE	10	ND	4,6-DINITRO 2-METHYLFHENOL	50	ND
4 ACHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ИD
2 ROBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
POPHORONE	10	ND	HEXACHLOROBENZENE	10	ND
Z ITROPHENOL	10	ND	FENTACHLOROFHENOL	10	ND
-DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
- NZOIC ACID	50	ND	ANTHRACENE	10	ND
_'c(2-CHLOROETHOXY)METHANE	10	ND	DI-N-BUTYLFHTHALATE	10	ND
2 -DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
÷, ,4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
FHTHALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
4 HLOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
별 ACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
CHLORO-3-METHYLFHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
= ETHYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
H ACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
	10	ND	BENZO(B)FLUORANTHENE	10	ND
_ 14.5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
Z HLORONAPHTHALENE	10	ND	BENZO(A) PYRENE	10	ND
2 ITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
METHYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
MAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
3 ITROANILINE	50	ND			
7					


QA/QC SURROGATE RECOVERIES

	TROBENZENE-C	5(35-114)	78%	2-FLUOROBIPHENYL(43-116)	69%	TERPHENYL -414	(33-141)	00%
=	NOL-d5	(10-94)	90%	2-FLUOROPHENDL (21-100)	64:	2.4.6-TRIBROMOPHENO		

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

^{👆 =} ANALYTE DETECTED IN PLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

May 8, 1990

David Purington
DAMES & MOORE
11701 Borman Drive, Suite 340
St. Louis, Missouri 63146

Project: 19943 - 002; Ford Earth City

Dear Mr. Purington:

Enclosed are the analytical results for your samples received in our laboratory on April 18, 1990, for the above captioned project.

Sample MW110 was originally extracted on April 19, 1990. The QC/MS analysis indicated that the surrogates did not meet the QC criteria. Hence, this sample was re-extracted on April 24, 1990, and later re-analysed. The data was reported for the re-analysed sample.

Per your request we have preformed a matrix spike and duplicate for the following samples; MW102 (semi-volatile), MW108 (Herbicides), MW110 (Pesticides), MW104 (Volatile)

If, in your review, you should have any questions or require additional information, please call.

Sincerely,

Randy Staggs

Project Manager

DAMES & MOORE

MAY 0 9 1990

RS/jl

ST. LOUIS, MISSOURI

Enclosures

260x25

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

in the face of the state of the

Sampl	le Source	& Client	Ford			Fle	old Personnel (S	ignature	;)
Projec	ci Tille				Job No. 19943-00	2			
Dale	.Tlme	Sample I.D. No.	Sample Type	No. of Containers	Sampling Site		Remark	S	•
1-17	9:00	16110	witi) i Seni, Ces	1 heats,	1~/
_	10:00	400109	- 	7		∦		<u> </u>	
- -	10:30	11W108	l—/						
4-1	13:30	MW103	_/						
	14:30	11W104	 				U		
U		TR.2	U	<u> </u>			Joc		
-,						_	~		
 		1		\/		4			
				1	- \	_		$\overline{}$	
	/		/	\				<u> </u>	/
	/		Í -	-\/					
/	/	-\			_		<u> </u>		
-A				······································			,		
					-			<u> </u>	
(Sign	nature)	Date Time	Received (Signature		Relinquished by: Date (Signature)	Time .	Received by: (Signature)	Date	Time
,	lahed by	Date Time	Received 1	Jayor 1900 Date Time	Relinquished by: Date	Time	Received by:	Date	Time
(Sign	ature)		. (Signature	:)	(Signature)		(Signature)		
	Islied by	Date Time	Kacelved b (Signature		Relinquished by: Date (Signature)	Time	Received by: (Signature)	Date	Tiac

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LLIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON ____

REPORT: 2397.01M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWL0 # 2397.01

DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW110

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
OTAL CYANIDE	0.01	mg/L	ND	04-27-90	SM 412D
TOTAL METALS					
- RSENIC	10.0	ug/L	ND	05-02-90	EPA 206.2
LEAD	ತ.೦	ug/L	ND	05-01-90	EPA 239.2
ERCURY	0.2	ug/L	ND	05-01-90	EPA 245.1
ELENIUM	5.0	ug/L	ND	05-02-90	EPA 270.2
7 THALLIUM	10.0	ug/L	ND	05-01-90	EPA 279.2
_'TNTIMONY	30.0	ug/L	ND	04-25-90	EPA 200.7
ERYLLIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
CADMIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
CHROMIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
OPPER	10.0	ug/L	102	04-25-90	EPA 200.7
_ ICKEL	10.0	ug/L	ND	04-25-90	EPA 200.7
SILVER	10.0	ug/L	ND	04-25-90	EPA 200.7
- INC	10.0	ug/L	40.5	04-25-90	EPA 200.7

PA = #EPA600/4-79-020, MARCH 1985

ID = NOT DETECTED ABOVE QUANTITATION LIMIT

⁻⁷⁵M = STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE

REPORT: 2397.01H

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWLD # 2397.01

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-27-90

DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW110

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	. RESULTS
2,4-D 2,4,5-TP (SILVEX)	1.0	ND ND

GA/GC SURROGATE RECOVERY

2,4,5-T (10-98)

89.4%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

-

_

L. 7

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

🛌 B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE

REPORT: 2397.01P

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLD # 2397.01

DATE SUBMITTED: 04-18-90
DATE EXTRACTED: 04-19-90
DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW110

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
RETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	MD
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	MD
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.1	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.1	ND
AROCHLOR-1260	1.1	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 100%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE

REPORT: 2397.01V

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2397.01

DATE SUBMITTED: 04-18-90 DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW110

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

	DET.				DET.	
IVOLATILES	LIMIT	RESULTS		<u>VOLATILES</u>	LIMIT	<u>RESULTS</u>
-						
HLOROMETHANE	10	ND		1,1,2,2-TETRACHLOROETHANE	5	ND
# ¡BROMOMETHANE	10	ND		1,2-DICHLOROPROPANE	5	ND
'INYL CHLORIDE	10	ND		TRANS-1,3-DICHLOROPROPENE	5	ND
:HLOROETHANE	10	ND		TRICHLOROETHENE	5	ND
_ METHYLENE CHLORIDE	5	16	B	DIBROMOCHLOROMETHANE	5	ND
METHYLENE CHLORIDE	10	4	JB	1,1,2-TRICHLOROETHANE	5	ND
- ARBON DISULFIDE	5	ND		BENZENE	5	ND
_,1-DICHLOROETHENE	5	ND		CIS-1,3-DICHLOROPROPENE	5	ND
=11,1-DICHLOROETHANE	5	ND		2-CHLOROETHYLVINYLETHER	10	ND
'RANS-1,2-DICHLORGETHENE	5	ND		BROMOFORM	5	ND
CHLOROFORM	5	ND		2-HEXANONE	10	ND
±31,2-DICHLOROETHANE	5	ND		4-METHYL-2-PENTANONE	10	ND
?-BUTANONE	10	ND		TETRACHLOROETHENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND		TOLUENE	5	ND
CARBON TETRACHLORIDE	5	ND		CHLOROBENZENE	5	ND
SYINYL ACETATE	10	ND		ETHYLBENZENE	5	ND
3ROMODICHLOROMETHANE	5	ND		STYRENE	5	ND
				TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(88-110) 96% BROMOFLUOROBENZENE(86-115) 92% 1,2-DICHLOROETHANE-d4(76-114) 100%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

L - :

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

A S & MOORE

1 1 BORMAN DRIVE, SUITE 340

LOUIS, MO 63146

DAVID PURINGTON

DATE: 05-08-90

REPORT: 2397.018

pr LE MATRIX: WATER

__In # 2397.01

E OD REF.: SW846-8270, EPA METHODOLOGY E ECT: 19943 - 002; FORD EARTH CITY

IPLE ID: MW110

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-24-90 DATE ANALYZED: 04-25-90

IVOLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/L)
1 OL	20	ND	ACENAPHTHENE	20	ND
2-CHLOROETHYL)ETHER	20	ND	2,4-DINITROPHENOL	100	ND
:HLOROPHENOL	20	ND	4-NITROPHENOL	100	ND
, DICHLOROBENZENE	20	ND	DIBENZOFURAN	20	ND
DICHLOROBENZENE	20	ND	2,4-DINITROTOLUENE	20	ND
JZYL ALCOHOL	20	ND	2,6-DINITROTOLUENE	20	ND
- DICHLOROBENZENE	20	ND	DIETHYLPHTHALATE	20	8 J
:- :THYLPHENOL	20	ND	4-CHLOROPHENYL-PHENYLETHER	20	ND
1 p(2-CHLOROISOPROPYL)ETHER	20	ND	FLUORENE	20	ND
METHYLPHENOL	20	ND	4-NITROANILINE	100	ND
I- TROSO-DI-n-PROFYLAMINE	20	ND	4,6-DINITRO 2-METHYLPHENOL	100	ND
H; CHLOROETHANE	20	ND	N-NITROSODIPHENYLAMINE(1)	20	ND
ROBENZENE	20	ND	4-BROMOPHENYL-PHENYLETHER	20	ND
rtt 'HORONE	20	ND	HEXACHLOROBENZENE	20	ND
2 TROPHENOL	20	ND	F'ENTACHLOROPHENOL	20	ND
I-DIMETHYLPHENOL	20	ND	PHENANTHRENE	20	ND
., 'TOIC ACID	100	ND	ANTHRACENE	20	ND
3 (2-CHLOROETHOXY) METHANE	20	ND	DI-N-BUTYLPHTHALATE	20	ND
->-p-DICHLOROPHENOL	20	ND	FLUORANTHENE	20	ND
h,4-TRICHLOROBENZENE	20	ND	PYRENE	20	ND
1 THALENE	20	ND	BUTYLBENZYLPHTHALATE	20	ND
1_ HLOROANILINE	20	ND	3,3-DICHLOROBENZIDINE	40	ND
CACHLOROBUTADIENE	20	ND	BENZO(A)ANTHRACENE	20	ND
- ILORO-3-METHYLPHENOL	20	ND	BIS(2-ETHYLHEXYL)PHTHALATE	20	ND
2 ETHYLNAPHTHALENE	20	ND	CHRYSENE	20	ND
"YACHLOROCYCLOPENTADIENE	20	ND	DI-N-OCTYL PHTHALATE	20	ND
6-TRICHLOROPHENOL	20	ND	BENZO(B)FLUORANTHENE	20	ND
2 .5-TRICHLOROPHENOL 2 .5-TRICHLOROPHENOL 2HLORONAPHTHALENE	100	ND	BENZO(K)FLUORANTHENE	20	ND
	20	ND	BENZO(A)PYRENE	20	ND
NITROANILINE	100	ND	INDENO(1,2,3-CD)PYRENE	20	ND
ETHYLPHTHALATE	20	ND	DIBENZ(A,H)ANTHRACENE	20	ND
A NAPHTHYLENE	20	ND	BENZO(G,H,I)PERYLENE	20	ND
VITROANILINE	100	ND			

QA/QC SURROGATE RECOVERIES

	RODENTENE SEASE							
	MODERATINE -02(32-1	114) 65%	2-FLUOROBIPHENY	L(43-116)	62%	TERPHENYL-d14	(33-141)	83%
, -,	NOL-d5 (10-9	74) 36%	2-FLUOROPHENOL	(21-100)	18%*	2,4,6-TRIBROMOPHENO	L(10-123)	212

F = NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

_IENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.02M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLD # 2397.02

DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW102

-ARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
DTAL CYANIDE	0.01	mg/L	ND	04-27-90	SM 412D
- ,					
ITOTAL METALS					
RSENIC	10.0	ug/L	ND	05-02-90	EPA 206.2
LEAD	3.0	ug/L	ND	05-01-90	EPA 239.2
- ERCURY	0.2	ug/L	ND	04-25-90	EPA 245.1
ELENIUM	5.0	ug/L	ND	05-02-90	EPA 270.2
*, HALLIUM	10.0	ug/L	ND	05-01-90	EPA 279.2
_ lantimony	30.0	ug/L	ND	04-25-90	EPA 200.7
ERYLLIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
_ ADMIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
CHROMIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
- OPPER	10.0	ug/L	326	04-25-90	EPA 200.7
ICKEL	10.0	ug/L	13.8	04-25-90	EPA 200.7
SILVER	10.0	ug/L	ND	04-25-90	EPA 200.7
_"~INC	10.0	ug/L	52.8	04-25-90	EPA 200.7

FPA = #EPA600/4-79-020, MARCH 1985

ID = NOT DETECTED ABOVE QUANTITATION LIMIT

, JM = STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

REPORT: 2397.02H

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLD # 2397.02

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW102

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS
2,4-D 2,4,5-TP (SILVEX)	1.0	DN DN

DA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

93.7%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

.IENT: DAMES & MOORE

REPORT: 2397.02P

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2397.02

DATE SUBMITTED: 04-18-90
DATE EXTRACTED: 04-19-90
DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW102

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	<u>RESULTS</u>
AL DUA DUG	A AE	L ID
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	D
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 83%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

TIENT: DAMES & MOORE

REPORT: 2397.02V

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON DATE: 05-08-90

SAMPLE MATRIX: WATER

SWL0 # 2397.02

DATE SUBMITTED: 04-18-90 DATE ANALYZED : 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW102

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

	DET.					DET.	
OLATILES	LIMIT	RE	SUL	<u>TS</u>	<u>VOLATILES</u>	LIMIT	RESULTS
LOROMETHANE	10		ND		1,1,2,2-TETRACHLORGETHANE	5	ND
PROMOMETHANE	10		ND		1,2-DICHLOROPROPANE	5	ND
"TNYL CHLORIDE	10		ND		TRANS-1,3-DICHLOROPROPENE	5	ND
- LOROETHANE	10		ND		TRICHLOROETHENE	5	ИD
THYLENE CHLORIDE	5	16		В	DIBROMOCHLOROMETHANE	5	ND
ACETONE	10		ND		1,1,2-TRICHLOROETHANE	5	ND
REON DISULFIDE	5		ND		BENZENE	5	ND
1-DICHLOROETHENE	5		ND		CIS-1,3-DICHLOROPROPENE	5	ND
-1,1-DICHLOROETHANE	5	3		J	2-CHLORGETHYLVINYLETHER	10	ND
RANS-1,2-DICHLOROETHENE	5		ND		BROMOFORM	5	ND
ILOROFORM	5		ND		2-HEXANONE	10	ND
1,2-DICHLOROETHANE	5		ND		4-METHYL-2-PENTANONE	10	ND
"-BUTANONE	10		ND		TETRACHLOROETHENE	5	ND
- ,1,1-TRICHLOROETHANE	5		ND		TOLUENE	5	ND
JARBON TETRACHLORIDE	5		ND		CHLOROBENZENE	5	ND
JUINYL ACETATE	10		ND		ETHYLBENZENE	5	ND
ROMODICHLOROMETHANE	5		ND		STYRENE	5	ND
					TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(88-110) 98% BROMOFLUOROBENZENE(86-115) 94% 1,2-DICHLOROETHANE-d4(76-114) 100%

[.]ID = NOT DETECTED ABOVE QUANTITATION LIMIT

⁻J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

^{| =} ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

~3 & MOORE 1 BORMAN DRIVE, SUITE 340 , LOUIS, MO 63146

₹ ECT: 19943 - 002; FORD EARTH CITY

DATE: 05-08-90

REPORT: 2397.02B

_ N: DAVID PURINGTON

DATE SUBMITTED: 04-18-90 A LE MATRIX: WATER 0 # 2397.02 DATE EXTRACTED: 04-19-90 DD REF.: SW846-8270, EPA METHODOLOGY DATE ANALYZED: 04-24-90

PLE ID: MW102

= _VOLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULT	
T IOL	10	ND	ACENAPHTHENE	10	ND	
1 2-CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND	
:HLOROPHENOL	10	ND	4-NITROPHENOL	50	ND	
- DICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND	
DICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND	
TIZYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND	
'-DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND	
: ETHYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND	
(2-CHLORGISOPROPYL)ETHER	10	ND	FLUORENE	10	ND	
TETHYLPHENOL	10	ND	4-NITROANILINE	50	ND	
: ITROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND	
1 ACHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND	
ROBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND	
PHORONE	10	ND	HEXACHLOROBENZENE	10	ND	
ITROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND	
-4-DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND	
'ZOIC ACID	50	ND	ANTHRACENE	10	ND	
(2-CHLOROETHOXY)METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND	
DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND	
2,4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND	
HTHALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND	
HLOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND	
KACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND	
HLORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	2	JB
ETHYLNAPHTHALENE,	10	ND	CHRYSENE	10	1	J
LAACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND	
'^,6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND	
,5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND	
. JHLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND	
NITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND	
SETHYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND	
INAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	DM	
HITROANILINE	50	ND				

QA/QC SURROGATE RECOVERIES

TROBENZENE-d5(35-114) 71% 2-FLUOROBIPHENYL(43-116) 68% TERPHENYL-d14 60% (33-141) ENOL-d5 (10-94) 49% 2-FLUOROPHENOL (21-100) 35% 2,4,6-TRIBROMOPHENOL(10-123)

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ESTIMATED VALUE: CONSERVANTE AS SAMPLE = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany • Suite "C" • Broken Arrow, Oklahoma 74012 • 918-251-2858

TIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.03M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWL0 # 2397.03

DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW108

RAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE	
TUTAL CYANIDE	0.01	mg/L	ND	04-27-90	SM 412D	
TAL METALS			•			
-RSENIC	10.0	ug/L	ND	05-02-90	EPA 206.2	
AD	3.0	ug/L	ND	05-01-90	EPA 239.2	
rcury	0.2	ug/L	ND	04-25-90	EPA 245.1	
SELENIUM	5.0	ug/L	ND	05-02-90	EPA 270.2	
ALLIUM	10.0	ug/L	ND	05-01-90	EPA 279.2	
TIMONY	30.0	ug/L	34.5	04-25-90	EPA 200.7	
∍∈RYLLIUM	5.0	ug/L	ND	04-25-90	EPA 200.7	
- DMIUM €	5.0	ug/L	ND	04-25-90	EPA 200.7	
ROMIUM	5.0	ug/L	ND	04-25-90	EPA 200.7	
PPER	10.0	ug/L	81	04-25-90	EPA 200.7	
MICKEL	10.0	ug/L	14.0	04-25-90	EPA 200.7	
LVER	10.0	ug/L	ND	04-25-90	EPA 200.7	
NC	10.0	ug/L	44.5	04-25-90	EPA 200.7	

 $^{^{2}}A = \#EPA600/4-79-020, MARCH 1985$

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

TY = STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

REPORT: 2397.03H

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLD # 2397.03

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW108

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS
2,4-D 2,4,5-TP (SILVEX)	1.0	ND ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

87.9%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

- J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

REPORT: 2397.03P

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLO # 2397.03

DATE SUBMITTED: 04-18-90
DATE EXTRACTED: 04-19-90
DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-B080, EPA METHODOLOGY

SAMPLE ID: MW108

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	MD
HEPTACHLOR	0.05	ND
ALDRIN	0.05 .	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	МD
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	מא
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 82%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

REPORT: 2397.03V

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLD # 2397.03

DATE SUBMITTED: 04-18-90
DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW108

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

<u> </u>	DET. LIMIT	RI	<u>ESUL</u>	<u>TS</u>	<u>VOLATILES</u>	DET. LIMIT	RESULTS
•							
ILOROMETHANE	10		ND		1,1,2,2-TETRACHLOROETHANE	5	ND
-3ROMOMETHANE	10		ND		1,2-DICHLOROPROPANE	5	ND
'INYL CHLORIDE	10		ИD		TRANS-1,3-DICHLOROPROPENE	5	ND
" HLOROETHANE	10		ND		TRICHLOROETHENE	5	ND
ETHYLENE CHLORIDE	5	15		В	DIBROMOCHLOROMETHANE	5	ND
ACETONE	10		ND		1,1,2-TRICHLOROETHANE	5	ND
ARBON DISULFIDE	5		ND		BENZENE	5	ND
.1-DICHLOROETHENE	5	3		J	CIS-1,3-DICHLOROPROPENE	5	ND
1,1-DICHLOROETHANE	5		ND		2-CHLOROETHYLVINYLETHER	10	ND
RANS-1,2-DICHLOROETHENE	5		ND		BROMOFORM	5	ND
HLOROFÓRM	5		ND		2-HEXANONE	10	ND
,2-DICHLOROETHANE	5		ND		4-METHYL-2-PENTANONE	10	ND
b-BUTANONE	10		ND		TETRACHLOROETHENE	5	ND
,1,1-TRICHLOROETHANE	5		ND		TOLUENE	5	ND
_ARBON TETRACHLORIDE	5		ND		CHLOROBENZENE	5	ND
VINYL ACETATE	10		ND		ETHYLBENZENE	5	ND
ROMODICHLOROMETHANE	5		ND		STYRENE	5	ND
	•		140		TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

OLUENE-d8(88-110) 100% BROMOFLUOROBENZENE(86-115) 95% 1,2-DICHLOROETHANE-d4(76-114) 103%

ID = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

| = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

& MOORE

.7J. BORMAN DRIVE, SUITE 340

- LOUIS, MO 63146

DAVID PURINGTON

REPORT: 2397.03B

DATE: 05-08-90

MPLE MATRIX: WATER

2397.03

→ D REF.: SW846-8270, EPA METHODOLOGY

ROJECT: 19943 - 002; FORD EARTH CITY

E ID: MW108

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-19-90

DATE ANALYZED: 04-24-90

EMITVOLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/L)
·큐 L	10	ND	ACENAPHTHENE	10	an
IS(2-CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
.OROPHENOL	10	ND	4-NITROPHENOL	50	ND
-)ICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
.4-DICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
TOTAL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
)ICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
-T SHYLPHENOL	10	ДN	4-CHLOROPHENYL-PHENYLETHER	10	ND
LS(2-CHLOROISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
THYLPHENOL	10	ND	4-NITROANILINE	50	ND
- TROSO-DI-n-PROPYLAMINE		ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
EXACHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
- DBENZENE	10	ДN	4-BROMOPHENYL-PHENYLETHER	10	ND
_ HORONE	10	ND	HEXACHLOROBENZENE	10	ND
-NI TROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
_^-DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
DIC ACID	50	ND	ANTHRACENE	10	ND
F2-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
_4-DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
_ THALENE	10	ИD	BUTYLBENZYLPHTHALATE	10	ND
-CHLOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
- CHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
LORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
.=mcTHYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
EYACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
-: 5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
:-CHLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
`- TROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
THYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	· ND
CENAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
TTROANILINE	50	ND			174

QA/QC SURROGATE RECOVERIES

ROBENZENE	-d5(35-114)	78%	2-FLUOROBIPHENYL (43-	-116)	66%	TERPHENYL-d14	(33-141)	65%
MENOL-d5			2-FLUOROPHENOL (21-					

iv = NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ ANALTIE DETECTED IN BLHNK HO WELL HO OF -- = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

'ENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.04M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLD # 2397.04

DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW103

AMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
IPTAL CYANIDE	0.01	mg/L	ND	04-27-90	SM 412D
- TAL METALS					
SENIC	10.0	ug/L	ND	05-02-90	EPA 206.2
4D	3.0	ug/L	ND	05-01-90	EPA 239.2
FROURY	0.2	ug/L	NĎ	04-25-90	EPA 245.1
- SELENIUM	5.0	ug/L	ND	05-02-90	EPA 270.2
ALLIUM	10.0	ug/L	ND	05-01-90	EPA 279.2
f TIMONY	30.0	ug/L	34.5	04-25-90	EPA 200.7
BERYLLIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
MUM	5.0	ug/L	ND	04-25-90	EPA 200.7
_ ROMIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
LUPPER	10.0	ug/L	43	04-25-90	EPA 200.7
- ATCKEL	10.0	ug/L	ND	04-25-90	EPA 200.7
LVER	10.0	ug/L	ND	04-25-90	EPA 200.7
NC	10.0	ug/L	34.1	04-25-90	EPA 200.7

^{&#}x27; 'A = #EPA600/4-79-020, MARCH 1985

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

1 = STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT: DAMES & MOORE REPORT: 2397.04H

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MD 63146 DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2397.04

DATE SUBMITTED: 04-18-90
DATE EXTRACTED: 04-27-90
DATE ANALYZED: 05-03-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002: FORD EARTH CITY

SAMPLE ID: MW103

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS		
2,4-D	1.0	ND		
2,4,5-TP (SILVEX)	0.2	ND		

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

84.5%

ND = NOT DETECTED ABOVE GUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT: DAMES & MOORE

REPORT: 2397.04P

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2397.04

DATE SUBMITTED: 04-18-90
DATE EXTRACTED: 04-19-90
DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW103

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	<u>RESULTS</u>
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.1	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.1	ND
AROCHLOR-1260	1.1	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 61%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

REPORT: 2397.04V

11701 BORMAN DRIVE, SUITE 340

DATE: 05-08-90

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLO # 2397.04

DATE SUBMITTED: 04-18-90 DATE ANALYZED: 04-20-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW103

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

-	DET.				DET.		
VOLATILES	LIMIT	RESU	<u>LTS</u>	<u>VOLATILES</u>	LIHIT	RESULTS	
- OROMETHANE	10	MD		1,1,2,2-TETRACHLOROETHANE	5	ND	
BRUMOMETHANE	10	ND		1,2-DICHLOROPROPANE	5	ND	
'T'YL CHLORIDE	10	ND		TRANS-1,3-DICHLOROPROPENE	5	ND	
OROETHANE	10	ND		TRICHLOROETHENE	5	an	
MHYLENE CHLORIDE	5	26	В	DIBROMOCHLOROMETHANE	5	ND	
ACETONE	10	17	B	1,1,2-TRICHLOROETHANE	5	ND	
BON DISULFIDE	5	ND		BENZENE	5	ND	
1 -DICHLOROETHENE	5	ND		CIS-1,3-DICHLOROPROPENE	5	ND	
1,1-DICHLORGETHANE	5	ND		2-CHLOROETHYLVINYLETHER	10	. ND	
" NS-1,2-DICHLOROETHENE	5	ND		BROMOFORM	5	ND	
OROFORM	5	ND		2-HEXANONE	10	ND	
1,2-DICHLOROETHANE	5	ND		4-METHYL-2-PENTANONE	10	ND	
S-BUTANONE	10	ND		TETRACHLOROETHENE	5	ND	
l,1-TRICHLOROETHANE	5	ND		TOLUENE	5	8	
1 RBON TETRACHLORIDE	5	ND		CHLOROBENZENE	5	· ND	
VINYL ACETATE	10	ND		ETHYLBENZENE	5	2	J
MODICHLOROMETHANE	5	ND		STYRENE	5	ND	
-				TOTAL XYLENES	5	10	

QA/QC SURROGATE RECOVERIES

---UENE-d8(88-110) 99% BROMOFLUOROBENZENE(86-115) 94% 1,2-DICHLOROETHANE-d4(76-114) 93%

- = NOT DETECTED ABOVE QUANTITATION LIMIT
- J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION
 - = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE
 - = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

* % MOORE m BORMAN DRIVE, SUITE 340 LDUIS, MO 63146 - DAVID PURINGTON

REPORT: 2397.04B

DATE: 05-08-90

™, _E MATRIX: WATER b # 2397.04 T D REF .: SW846-8270, EPA METHODOLOGY :0 CT: 19943 - 002; FORD EARTH CITY PLE ID: MW103

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-19-90

DATE ANALYZED: 04-24-90

· VOLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/L)
TE IL	10	ND	ACENAPHTHENE	10	ND
: <u>C.l-Chloroethyl</u>)Ether	10	ND	2,4-DINITROPHENOL	50	ND
HLOROPHENOL	10	ND	4-NITROPHENOL	50	ND
← ICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
.4 ICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
ZYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
_' DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
- THYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
💃 (2-CHLOROISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
IETHYLPHENOL	10	ND	4-NITROANILINE	50	ND
TROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
E CHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
ROBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
HORONE	10	ND	HEXACHLOROBENZENE	10	ND
- TROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
	10	ND	PHENANTHRENE	10	ND
L-OIC ACID	50	ND	ANTHRACENE	10	ND
I 2-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
<u> </u>	10	ND	FLUORANTHENE	10	ND
1.4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
ITHALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
- ILOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
"ACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
*LORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
: ETHYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
上、ACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
h,6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
- ,5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
HLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
MITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
ETHYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
NAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
NITROANILINE	50	ND	, ,-,		

QA/QC SURROGATE RECOVERIES

ROBENZENE-	d5(35-114)	78%	2-FLUOROBIPHENY	L(43-116)	75%	TERPHENYL-d14	(33-141)	
NOL-d5	(10-94)	52%	2-FLUOROPHENOL	(21-100)	34%	2,4,6-TRIBROMOPHEN	DL(10-123)	30%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ATTN: DAVID PURINGTON

ST. LOUIS, MO 63146 DATE: 05-07-90

REPORT: 2397.05M

SAMPLE MATRIX: WATER

SWLD # 2397.05

DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW104

	DET.			DATE	METHOD
-TARAMETER	LIMIT	UNIT	RESULTS	ANALYZED	REFERENCE
TAL CYANIDE	0.01	mg/L	ND	04-27-90	SM 412D
TAL METALS					
HRSENIC	10.0	ug/L	ND	05-02-90	EPA 206.2
** =AD	3.0	ug/L	ND	05-01-90	EPA 239.2
RCURY	0.2	ug/L	ND	04-25-90	EPA 245.1
LENIUM	5.0	ug/L	ND	05-02-90	EPA 270.2
##HALLIUM	10.0	ug/L	ND	05-01-90	EPA 279.2
TIMONY	30.0	ug/L	ND	04-25-90	EPA 200.7
- RYLLIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
CADMIUM	5.0	ug/L	ND .	04-25-90	EPA 200.7
HROMIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
_ IPPER	10.0	ug/L	131	04-25-90	EPA 200.7
MICKEL	10.0	ug/L	ND	04-25-90	EPA 200.7
*FILVER	10.0	ug/L	ND	04-25-90	EPA 200.7
INC	10.0	ug/L	40.7	04-25-90	EPA 200.7

PA = #EPA600/4-79-020, MARCH 1985

D = NOT DETECTED ABOVE QUANTITATION LIMIT

SM = STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

.IENT: DAMES & MOORE REPORT: 2397.05H

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146 DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2397.05

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-03-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW104

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS
2,4-D 2,4,5-TP (SILVEX)	1.0	ND ND

GA/GC SURROGATE RECOVERY

2,4,5-T (10-98) 79.6%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

TB = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

- LIENT: DAMES & MOORE

REPORT: 2397.05P

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2397.05

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-19-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW104

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	'ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 54%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

FINT: DAMES & MOORE

REPORT: 2397.05V

11701 BORMAN DRIVE, SUITE 340

DATE: 05-08-90

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2397.05

DATE SUBMITTED: 04-18-90 DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW104

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

	DET.				DET.	
HILES	LIMIT	R	<u>ESULTS</u>	<u>VOLATILES</u>	LIMIT	RESULTS
**						
Chloromethane	10		ND	1,1,2,2-TETRACHLOROETHANE	5	ND
OMOMETHANE	10		ND	1,2-DICHLOROPROPANE	5	MD
YL CHLORIDE	10		מא	TRANS-1,3-DICHLOROPROPENE	5	ND
C DROETHANE	10		ND	TRICHLOROETHENE	5	ND
METHYLENE CHLORIDE	5	1	JB	DIBROMOCHLOROMETHANE	5	ND
TONE	10	5	JB	1,1,2-TRICHLOROETHANE	5	ND
U BON DISULFIDE	5		ND	BENZENE	5	ND
1,1-DICHLOROETHENE	5		ND	CIS-1,3-DICHLOROPROPENE	5	ND
1-DICHLOROETHANE	5		ND	2-CHLOROETHYLVINYLETHER	10	ND
. NS-1,2-DICHLOROETHENE	5		ND	BROMOFORM	5	ND
C.LOROFORM	5		ND	2-HEXANONE	10	ND
- 2-DICHLORGETHANE	5		ND	4-METHYL-2-PENTANONE	10	ND
IUTANONE	10		ND	TETRACHLOROETHENE	5	ND
11-TRICHLOROETHANE	5		ND	TOLUENE	5	ND
CARBON TETRACHLORIDE	5		ND	CHLOROBENZENE	5	ND
IYL ACETATE	10		ND	ETHYLBENZENE	5	ND
-)MODICHLOROMETHANE	5		ND	STYRENE	5	ND
	-		-	TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

IOLUENE-d8(88-110) 103% BROMOFLUOROBENZENE(86-115) 95% 1,2-DICHLOROETHANE-d4(76-114) 104%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

& MOORE
BORMAN DRIVE, SUITE 340
_OUIS, MO 63146
- DAVID PURINGTON

REPORT: 2397.05B

DATE: 05-08-90

E MATRIX: WATER # 2397.05

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-19-90

D REF.: SW846-8270, EPA METHODOLOGY
CT: 19943 - 002; FORD EARTH CITY

DATE ANALYZED: 04-24-90

LE ID: MW104

'-OLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/L)
<u> </u>	10	ND	ACENAPHTHENE	10	ND
CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
_OROPHENOL	10	ND	4-NITROPHENOL	50	ND
: ICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
1 ICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
TYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
, ⁻ ICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
' HYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
CHLOROISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
THYLPHENOL	10	ND	4-NITROANILINE	50	ND
T ROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
_ HLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
OBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
. IORONE	10	ND	HEXACHLOROBENZENE	10	ND
· ROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
TIC ACID	50	ND	ANTHRACENE	10	ND
: :-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
':_JICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
14-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
HALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
OROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
CHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
ORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
[HYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
14CHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
15-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
ORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
TROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
THYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
: APHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
TROANILINE	50	ND			

QA/QC SURROGATE RECOVERIES

-	OBENZENE-d5(35-114)	80%	2-FLUOROBIPHENY	L(43-116)	75%	TERPHENYL-d14 (33-141)	75%	
† _ ►	OL-d5 (10-94)	48%	2-FLUOROPHENOL	(21-100)	32%	2,4,6-TRIBROMOPHENOL(10-123)	40%	

NOT DETECTED ABOVE QUANTITATION LIMIT

ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION
ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE
SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

"LIENT: DAMES & MOORE

REPORT: 2397.06V

11701 BORMAN DRIVE, SUITE 340

DATE: 05-08-90

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLO # 2397.06

DATE SUBMITTED: 04-18-90 DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: TR-2

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

	DET.				DET.	
OLATILES	LIMIT	RES	ULTS	<u>VOLATILES</u>	LIMIT	RESULTS
CHLOROMETHANE	10	N	D	1,1,2,2-TETRACHLOROETHANE	5	ND
"-BROMOMETHANE	10	N	D	1,2-DICHLOROPROPANE	5	ND
INYL CHLORIDE	10	N	D	TRANS-1,3-DICHLOROPROPENE	5	ND
HLOROETHANE	10	N	D	TRICHLOROETHENE	5	ND
METHYLENE CHLORIDE	5	18	В	DIBROMOCHLOROMETHANE	5	ND
CETONE	10	2	JB	1,1,2-TRICHLOROETHANE	5	ND
· ARBON DISULFIDE	5	N	D	BENZENE	5	ND
1,1-DICHLOROETHENE	5	N	D	CIS-1,3-DICHLOROPROPENE	5	ND
1-DICHLOROETHANE	5	N	D	2-CHLOROETHYLVINYLETHER	10	ND
"RANS-1,2-DICHLOROETHENE	5	N	D	BROMOFORM	5	D
CHLOROFORM	5	N	D	2-HEXANONE	10	ND
-1,2-DICHLOROETHANE	5	N	D	4-METHYL-2-PENTANONE	10	ND
2-BUTANONE	10	N	D	TETRACHLOROETHENE	5	ND
l,1,1-TRICHLOROETHANE	5	N	D	TOLUENE	5	ND
CARBON TETRACHLORIDE	5	N	D	CHLOROBENZENE	5	ND
/INYL ACETATE	10	N	D	ETHYLBENZENE	5	ND
3ROMODICHLOROMETHANE	5	N	D	STYRENE	5	ND
-				TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

_ _ TOLUENE-d8(88-110) 104% BROMOFLUOROBENZENE(86-115) 97% 1,2-DICHLOROETHANE-d4(76-114) 106%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ANALYTICAL REPORT

L. 1ES & MOORE

REPORT: G2704

11701 Borman Drive

Louis. Missouri 63149

REPORT DATE: 05/03/90

LO IDENTIFICATION

MPLE NO.:

2397.01 - 2397.06

- TE RECEIVED: 04/18/90

QA/QC

<u>LESCRIPTION</u>	PARAMETER	RESULTS
- ETHOD BLANK 05/01/90 -ETHOD BLANK 05/01/90	LEAD THALLIUM	<3
TANK CDIKE OF 101 100	TEAD	00% DECOUEDY
LANK SPIKE 05/01/90	LEAD	99% RECOVERY
LANK SPIKE 05/01/90	LEAD	98% RECOVERY
BLANK SPIKE 05/01/90	THALLIUM	98% RECOVERY
TLANK SPIKE 05/01/90	THALLTIM	95% RECOVERY

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: G2704.2

DATE: 05-08-90

MS

SAMPLE MATRIX: WATER
SWLO # 2397.03 (MS/MSD)
SAMPLE ID: MW108 (MS/MSD)

HERBICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

·	SPIKE ADDED (ug/L)	AMT. FOUND SMP. (ug/L)	AMT. FOUND MS (ug/L)	PERCENT RECOVERY	
?,4-D	166.7	0	129.5	77.7	
2,4,5-TP (SILVEX)	16.7	0	14.8	88.6	
		•			

T	AMT. FOUND	PERCENT	RECOVERY PERCENT	
	MSD (ug/L)	RECOVERY	DIFFERENCE	
_2,4-D	124.8	74.9	3.7	
'2,4,5-TP (SILVEX)	14.3	85.6	3.4	

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

:LIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

DATE: 05-08-90

REPORT: G2704.3

SAMPLE MATRIX: WATER SWLD # METHOD BLANK

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-19-90 DATE ANALYZED : 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: BLANK

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	D
BETA-BHC	0.05	מא מא
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	D
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 95%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

IENT: DAMES & MOORE

REPORT: G2704.4

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVE PURINGTON

SAMPLE MATRIX: WATER
SWLO # 2397.01 (MS/MSD)
DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW110 (MS/MSD)

PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

., !	SPIKE ADDED (ug/L)	AMT. FOUND (SAMPLE) (ug/L)	AMT. FOUND (MS) (ug/L)	MS PERCENT RECOVERY	_
•					
AMMA-BHC	0.40	0	0.45	112.5%	
EPTACHLOR	0.40	0	0.44	110.0%	
_DRIN	0.40	0	0.43	107.5%	
IELDRIN	1.00	0	1.20	120.0%	
-NDRIN	1.00	0	1.30	130.0%	
,4'-DDT	1.00	0	1.30	130.0%	

٠ 	AMT. FOUND (MSD) (ug/L)	MSD PERCENT RECOVERY		
AMMA-BHC	0.40	100.0%	11.8%	
HEPTACHLOR	0.41	102.5%	7.1%%	
LDRIN	0.38	95.0%	12.3%	
IELDRIN	1.10	110.0%	8.7%	
ENDRIN	1.10	110.0%	16.7%	
~,4'-DDT	1.20	120.0%	8.0%	

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

51. LUUIS, MU 03140

DATE: 05-08-90

REPORT: G2704.5

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER SWLO # METHOD BLANK

DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

•	DET.			DET.	
LATILES	LIMIT	RESULTS	<u>VOLATILES</u>	LIMIT	RESULTS
ILOROMETHANE	10	ND	1,1,2,2~TETRACHLOROETHANE	5	ND
COMOMETHANE	10	ND	1,2-DICHLOROPROPANE	5	ND
VINYL CHLORIDE	10	ND	TRANS-1,3-DICHLOROPROPENE	5	ND
HLOROETHANE	10	ND	TRICHLOROETHENE	5	ND
- THYLENE CHLORIDE	5	10	DIBROMOCHLOROMETHANE	5	ND
LETONE	10	3 3	1,1,2-TRICHLOROETHANE	5	ND
TARBON DISULFIDE	5	ND	BENZENE	5	ND
,1-DICHLOROETHENE	5	ND	CIS-1,3-DICHLOROPROPENE	5	ND
,1-DICHLOROETHANE	5	П	2-CHLOROETHYLVINYLETHER	10	ND
_TRANS-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
HLOROFÓRM	5	ND	2-HEXANONE	10	ND
,2-DICHLOROETHANE	5	ND	4-METHYL-2-PENTANONE	10	ND
2-BUTANONE	10	MD	TETRACHLOROETHENE	5	ND
1,1-TRICHLOROETHANE	5	ND	TOLUENE	5	ND
ARBON TETRACHLORIDE	5	ND	CHLOROBENZENE	5	ND
INYL ACETATE	10	ND	ETHYLBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	STYRENE	5	ND
			TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

OLUENE-d8(88-110) 100% BROMOFLUOROBENZENE(86-115) 86% 1,2-DICHLOROETHANE-d4(76-114) 95%

ID = NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SURROGATE RECOVERY OUTSIDE OF QC LIMITS

SUUTHYEST LADURATURE OF URLEATION AND ALL OF

A

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT: DAMES & MOORE

REPORT: G2704.6

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER SWLO # METHOD BLANK

DATE ANALYZED: 04-20-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

	DET.				DET.	
LATILES	LIMIT	RE	SULTS	VOLATILES	LIMIT	RESULTS
CHLOROMETHANE	10		ND	1,1,2,2-TETRACHLOROETHANE	5	ND
- ROMOMETHANE	10		ND	1,2-DICHLOROPROPANE	5	ND
INYL CHLORIDE	10		ND	TRANS-1,3-DICHLOROPROPENE	5	ND
CHLORDETHANE	10		ND	TRICHLOROETHENE	5	ND
ETHYLENE CHLORIDE	5	4	J	DIBROMOCHLOROMETHANE	5	ND
CETONE	10	4	J	1,1,2-TRICHLOROETHANE	5	ND
UARBON DISULFIDE	5		ND	BENZENE	5	ND
1,1-DICHLOROETHENE	5		ND	CIS-1,3-DICHLOROPROPENE	5	ND
1-DICHLOROETHANE	5		ND	2-CHLÓRGETHYLVINYLETHER	10	ND
.RANS-1,2-DICHLOROETHENE	5		ND	BROMOFORM	5	ND
CHLOROFÓRM	5		ND	2-HEXANDNE	10	ND
,2-DICHLOROETHANE	5		ND	4-METHYL-2-PENTANONE	10	ND
-BUTANONE	10		ND	TETRACHLOROETHENE	5	ND
m 1,1,1-TRICHLOROETHANE	5		ND	TOLUENE	5	ND
CARBON TETRACHLORIDE	5		ND	CHLOROBENZENE	5	ND
- /INYL ACETATE	10		ND	ETHYLBENZENE	5	ND
BROMODICHLOROMETHANE	5		ND	STYRENE	5	ND
	•			TOTAL XYLENES	5	ND

GA/QC SURROGATE RECOVERIES

[OLUENE-d8(88-110) 99% BROMOFLUOROBENZENE(86-115) 94% 1,2-DICHLOROETHANE-d4(76-114) 97%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

^{* =} SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

NT: DAMES & MOORE

REPORT: G2704.7

11701 BORMAN DRIVE, SUITE 340

•

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVE PURINGTON

SAMPLE MATRIX: WATER
SWLO # 2397.05 (MS/MSD)
DATE SUBMITTED: 04-18-90
SAMPLE ID: MW104 (MS/MSD)

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

- POUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS PERCENT RECOVERY	QC LIMITS RECOVERY
1-1-DICHLOROETHENE	50	0	58	116	61 - 145
CHLOROETHENE	50	0	54	108	71 - 120
R SENE	50	0	· 60	120	76 - 127
TOLUENE	50	0	57	114	76 - 125
OROBENZENE	50	0	54	108	75 - 130

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD PERCENT RECOVERY	PERCENT RPD	QC RPD	LIMITS REC.
DICHLOROETHENE	50	56	102	4	14	61 - 145
TRICHLOROETHENE	50	54	108	0	14	71 - 120
	50	57	114	5	11	76 - 127
UENE	50	56	112	2	13	76 - 125
COROBENZENE	50	54	108	0	13	75 - 130

. LUES OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklainoma 74012 . 918-251-2858

& MOORE 71 BORMAN DRIVE, SUITE 340 LOUIS, MO 63146
DAVID PURINGTON

REPORT: G2704.8

DATE: 05-08-90

MATRIX: WATER # METHOD BLANK

DATE EXTRACTED: 04-19-90

7 D REF.: SW846-8270, EPA METHODOLOGY D. 37: 19943 - 002; FORD EARTH CITY

DATE ANALYZED : 04-23-90

TLE ID: METHOD BLANK

JLATILES	DET. LIMIT	RESULTS (ug/L)	<u>SEMIVOLATILES</u>	DET. LIMIT	RESULTS (ug/L)
T L	10	ND	ACENAPHTHENE	10	ND
S -CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
ILOROPHENOL	10	ND	4-NITROPHENOL	50	ND
ICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
4 ICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
YL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
- ICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
M HYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
CHLOROISOPROPYL)ETHER بيكا	10	MD	FLUORENE	10	ND
THYLPHENOL	10	ND	4-NITROANILINE	50	ND
TH ROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	MD
X HLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
OBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
, ORONE	10	ND	HEXACHLOROBENZENE	10	ND
N ROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
-4-DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
TOIC ACID	50	ND	ANTHRACENE	10	ND
:: -CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
.4 LICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
··: 'HALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
-(.OROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
FYACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
.ORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	12
-I HYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
EXACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
'3-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
- 3-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
-UORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
ITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
[THYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
THYLPHTHALATE THYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
-사, TROANILINE	50	ND	. , ,		•••
·					

QA/QC SURROGATE RECOVERIES

- OBENZENE	-d5(35-114)	78%	2-FLUOROBIPHENY	L(43-116)	69%	TERPHENYL-d14	(33-141)	94%
4DL-d5						2.4.6-TRIBROMOPHENO	L(10-123)	81%

NOT DETECTED ABOVE QUANTITATION LIMIT _= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

14 3 & MOORE

1: ; BORMAN DRIVE, SUITE 340

LOUIS, MO 63146

DATE: 05-08-00

REPORT: G2704.9

. : DAVID PURINGTON

THE MATRIX: WATER

É DD REF.: SW846-8270, EPA METHODOLOGY

R ECT: 19943 - 002; FORD EARTH CITY

PLE ID: METHOD BLANK

 /H E	; v	3-0	0-7	U	

DATE EXTRACTED: 04-24-90

DATE ANALYZED: 04-25-90

IVOLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/L)
H OL	10	ND	ACENAPHTHENE	10	ND
L, 2-CHLOROETHYL) ETHER	10	ND	2,4-DINITROPHENOL	50	ND
LOROPHENOL	10	ND	4-NITROPHENOL	50	ND
; DICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
DICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
YZYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
:- THYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
(2-CHLOROISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
TTHYLPHENOL	10	ND	4-NITROANILINE	50	ND
TF (TROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
LACHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
PROBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
PHORONE	10	ND	HEXACHLOROBENZENE	10	ND
: ITROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
	10	ND	PHENANTHRENE	10	ND
ZOIC ACID	50	ND	ANTHRACENE	10	ND
3 (2-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
L4_4-DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
→ HTHALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
4 JHLOROANILINE	10	ND	3.3-DICHLOROBENZIDINE	20	ND
KACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
HLORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
2 ETHYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
XXACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
,6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
4 .,5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
2-CHLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
MITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
- IETHYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
! NAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
NITROANILINE	50	ND	. , ,=,:=:::=:::=		

QA/QC SURROGATE RECOVERIES

TROBENIZENE	32/72 4445						
THOUSENE.	-05(35-114)	60X	2-FLUOROBIPHENYL(43-116)	58%	TERPHENYL-d14	(33-141)	
ENOL-d5	(10-94)	37%	2-FLUOROPHENOL (21-100)	41%	2.4.A-TRIBROMOPHENO	1 (10-123)	A52

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

TENT: DAMES & MOORE

REPORT: G2704.10

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER
SWLO # 2397.02 (MS/MSD)
DATE SUBMITTED: 04-18-90
DATE EXTRACTED: 04-19-90
DATE ANALYZED: 04-24-90

METHOD REFERENCE: SW846-8270, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW102 (MS/MSD)

SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS PERCENT	QC Limits
MPOUND	(ug/L)	(ug/L)	(ug/L)	RECOVERY	RECOVERY
L- NOL	200	0	115	58	26 - 90
- '-CHLOROPHENOL	200	0	120	60	25 - 102
L-DICHLOROBENZENE	100	0	67	67	28 - 104
ITROSO-di-n-PROPYLAMINE	100	0	56	56	41 - 126
4-TRICHLOROBENZENE	100	0	68	68	38 - 107
CHLORO-3-METHYLPHENOL	200	0	122	61	26 - 103
NAPHTHENE	100	0	78	78	31 - 137
ITROPHENOL	200	0	179	90*	11 - 114
- 1-1-DINITROTOLUENE	100	0	90	90	28 - 89
"ITACHLOROPHENOL	200	0	104	52	17 - 109
ENE	100	0	78	78	35 - 142

	SPIKE ADDED	MSD CONCENTRATION	MSD PERCENT	PERCENT	ac	
HPOUND	(ug/Kg)	(ug/Kg)	RECOVERY	RPD	RPD	RECOVERY
: NOL	200	123	62	7	35	26 - 90
2-CHLOROPHENOL	200	116	58	3	50	25 - 102
DICHLOROBENZENE	100	76	76	12	27	28 - 104
· IITROSO-di-n-PROPYLAMINE	100	50	50	11	38	41 - 126
1,2,4-TRICHLOROBENZENE	100	70	70	3	23	38 - 107
THLORO-3-METHYLPHENOL	200	119	60	2	.33	26 - 103
:NAPHTHENE	100	77	77	i	19	31 - 137
: IITROPHENOL	200	188	94*	4	50	11 - 114
A-DINITROTOLUENE	100	86	86	4	47	28 - 89
ITACHLOROPHENOL	200	117	58	11	47	17 - 109
ENE	100	79	79	1	36	35 - 142

THLUES OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

REPORT: 2371.05MT

DATE: 05-03-90

CLIENT: DAMES & MOORE

11701 BORMAN DRIVE

ST. LOUIS, MISSOURI 63149

ATTN: DAVE PURINGTON

SAMPLE MATRIX: SOIL

SWL0 # 2371.05

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY SAMPLE ID: COMP. 1

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
	<u> </u>	O.V.	11230213		1/2: 2:/2:402
TOTAL CYANIDES	1.0	ug/Kg	ND	04-27-90	SM 412D
TOTAL METALS					
-ARSENIC	2.0	mg/kg	5.89	04-25-90	SW 7060
¹ _EAD	0.6	mg/kg	13.6	04-19-90	SW 7421
MERCURY	0.1	mg/kg	מא	04-18-90	SW 7471
SELENIUM	0.4	mg/kg	ND	04-24-90	SW 7740
THALLIUM	0.4	mg/kg	ND	04-19-90	SW 7841
ANTIMONY	6.0	mg/kg	ND	04-19-90	SW 6010
BERYLLIUM	1.0	mg/kg	ND	04-19-90	SW 6010
— — CADMIUM	1.0	mg/kg	ND	04-19-90	SW 6010
CHROMIUM	1.0	mg/kg	18.1	04-19-90	SW 6010
COPPER	2.0	mg/kg	22.8	04-19-90	SW 6010
_NICKEL	2.0	mg/kg	18.3	04-19-90	SW 6010
SILVER	2.0	mg/kg	ND	04-19-90	SW 6010
- ZINC	2.0	mg∕kg	62.4	04-19-90	SW 6010

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

SW = TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION #SW846, THIRD EDITION, NOVEMBER 1986

SM = STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16TH EDITION, 1985

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID FURINGTON

SAMPLE MATRIX: SOIL

SWLO # 2371.05

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY SAMPLE ID: COMP. 1

I RAMETER	DET. LIMIT	UNIT	RESULTS	DATE EXTRACTED	DATE ANALYZED	METHOD REFERENCE			
TAL EXTRACTABLE HYDROCARBONS									
_GASOLINE	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID			
T. *ESEL	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID			
_ IROSENE	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID			
J. '-4	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID			
TNAFTHA	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID			
INKER C/#6 FUEL DIL	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID			
SCELLANEOUS (1)	1.0	mg/Kg	5.1	04-19-90	04-21-90	GC/FID			

QA/QC SURROGATE RECOVERY

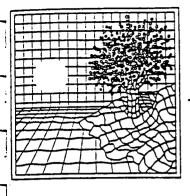
NAPHTHALENE

95%

REPORT: 2371.05T

05-03-90

DATE:


_(1) = ANALYSIS SHOWS MISCELLANEOUS PEAKS WHICH CANNOT BE IDENTIFIED AS ANY SPECIFIC PATTERN. THE RESPONSE FACTOR FOR DIESEL WAS USED.

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ COMPOUND FOUND IN BLANK AS WELL AS SAMPLE

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ UNABLE TO QUANTITATE DUE TO MATRIX INTERFERENCE

May 3, 1990

Dave Purington DAMES & MOORE 11701 Borman Drive St. Louis. MO 63146

Project: Earth City

Dear Mr. Furington:

Enclosed are the analytical results for your samples received in our laboratory on April 13, 1990, for the above-captioned project.

If, in your review, you should have any questions or require additional information, please call.

Sincerely,

Randy Staggs Project Manager

RE/1k

Enclosures

DAMES & MOORE

MAY 04 1990

ST. LOUIS, MISSOURI

314-993-4599

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

Sample	o Sourco	& Client	Fo	RD US	Rod	£57				ld Parsonnal (SI	gnature)
Projec	I Tille	GNL	c: tz		•		Job No. / 954	13-00	2			
Dato	.Timo	Samp I.D. N	lo.	Sample Type	No. (Contal		Sampling S	Sllo	_ .	Remark	.	•
4/12		BKG		Soi 1	3		_		_ 2	PH, Soni V, Red,	Hest, A	61. CA
		54		sedimi	3							
		_53		sedinit	3	<u>.</u>						
		Comp		50:1	3						·	
		Comp	· · · · ·	50:1			·	 -	- -	<u> </u>	···	·
			$\overline{\wedge}$						- -			• • • •
								····			·	
		<u>/</u>					-			/·		·.
			\		/		\ <u></u>	·	- -			
-/				$\overline{}$	<u> </u>		\ \					
				·					∵∥		•	
												, .
	italied by lature)		Time 5.60	Received Missing Mulicipal Mulicipal	o) 4/ _{13/}	Tine 0830	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date.	Time
	ished by	Date	Tima	Received (Signatur	DAI DUTO	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
	ilelied by	Date	Time	. Received (Signature	, ,	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
												<u></u>

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

2371.01MT

05-03-90

REPORT:

DATE:

CLIENT: DAMES & MOORE

11701 BORMAN DRIVE

ST. LOUIS, MISSOURI 63149

ATTN: DAVE PURINGTON

SAMPLE MATRIX: SOIL

SWL0 # 2371.01

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: BKG

1	PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
	TOTAL CYANIDES	1.0	ug/Kg	ND	04-27-90	SM 412D
	TOTAL METALS					
-	ARSENIC	2.0	mg/kg	5.80	04-25-90	SW 7060
1	LEAD	0.6	mg/kg	17.4	04-19-90	SW 7421
l	MERCURY	0.1	mg∕kg ·	ND	04-18-90	SW 7471
	SELENIUM	0.4	mg/kg	ND	04-24-90	SW 7740
	THALLIUM	0.4	mg/kg	ND	04-19-90	SW 7841
I	ANTIMONY	6.0	mg/kg	6.9	04-19-90	SW 6010
j	BERYLLIUM	1.0	mg/kg	ND	04-19-90	SW 6010
	CADMIUM	1.0	mg/kg	1.1	04-19-90	SW 6010
7	CHROMIUM	1.0	mg/kg	14.5	04-19-90	SW 6010
J	COPPER	2.0	mg/kg	24.0	04-19-90	SW 6010
	NICKEL	2.0	mg/kg	18.0	04-19-90	SW 6010
7	SILVER	2.0	mg∕kg	ND	04-19-90	SW 6010
	ZINC	2.0	mg/kg	61.6	04-19-90	SW 6010

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

SW = TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION #SW846, THIRD EDITION, NOVEMBER 1986

SM = STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16TH EDITION, 1985

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWLO # 2371.01

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: BKG

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE EXTRACTED	DATE ANALYZED	METHOD REFERENCE
TOTAL EXTRACTABLE HY	DROCARBO	NS				
GASOLINE	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
LDIESEL	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
EROSENE	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
JP-4	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
NAPTHA	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
BUNKER C/#6 FUEL DIL	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
Liscellaneous (1)	1.0	mg/Kg	14.9	04-19-90	04-20-90	GC/FID '

QA/QC SURROGATE RECOVERY

NAPHTHALENE

102%

REPORT: 2371.01T

05-03-90

DATE:

(1) = ANALYSIS SHOWS MISCELLANEOUS PEAKS WHICH CANNOT BE IDENTIFIED AS ANY SPECIFIC PATTERN. THE RESPONSE FACTOR FOR DIESEL WAS USED.

= NOT DETECTED ABOVE QUANTITATION LIMIT

= COMFOUND FOUND IN BLANK AS WELL AS SAMPLE

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= UNABLE TO QUANTITATE DUE TO MATRIX INTERFERENCE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE, INC.

REPORT: 2371.01H

11701 BORMAN DRIVE

_

ST. LOUIS, MO 63149

DATE: 05-03-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.01

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

SAMPLE ID: BKG

RESULTS REFORTED IN ug/Kg OR Parts Per Billion

ERBICIDES	DET. LIMIT	UNIT	RESULTS
7,4-D	80.0	ug/Kg	ND
,4,5-TP (SILVEX)	10.0	ug/Kg	ND

-GA/GC SURROGATE RECOVERY

2,4,5-T (10~98)

94.2%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

3 = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858
DAMES & MOORE, INC. REPORT: 2371.01F

11701 BORMAN DRIVE

LIENT:

ST. LOUIS, MO 63149

ATTN: DAVID FURINGTON

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWLO # 2371.01

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED : 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

PROJECT: EARTH CITY

SAMPLE ID: BKG

RESULTS REPORTED IN ug/Kg OR Parts Fer Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALFHA-BHC	17.2	ND
BETA-BHC	17.2	ND
GAMMA-BHC(LINDANE)	17.2	ND
DELTA-BHC	17.2	ND
HEPTACHLOR	17.2	ND
ALDRIN	17.2	ND
HEPTACHLOR EFOXIDE	17.2	ND
ENDOSULFAN I	17.2	ND
4,4-DDE	17.2	ND
DIELDRIN	34.5	ND
ENDRIN	34.5	ND
ENDOSULFAN II	34.5	ND
4,4-DDD	34.5	ND
ENDOSULFAN SULFATE	34.5	ND
4,4-DDT	34.5	ND
ENDRIN KETONE	34.5	ND
METHOXYCHLOR	172.4	ND .
ALPHA-CHLORDANE	172.4	ND
GAMMA-CHLORDANE	172.4	ND
TOXAPHENE	344.8	ND
AROCHLOR-1221	172.4	ND
AROCHLOR-1232	172.4	ND
AROCHLOR-1242	172.4	ND
AROCHLOR-1016	172.4	ND
AROCHLOR-1248	172.4	ND
AROCHLOR-1254	344.8	ND
AROCHLOR-1260	344.8	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 89%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

S & MOORE, INC.
1 BORMAN DRIVE
LOUIS, MO 63149
4: DAVID PURINGTON

REPORT: 2371.01B

DATE: 05-03-90

PLE MATRIX: SOIL b # 2371.01 HOD REF.: SW846-8270, EPA METHODOLOGY JECT: EARTH CITY DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED: 04-26-90

PLE ID: BKG

IVOLATILES	DET. LIMIT	RESULTS (ug/Kg)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/Kg)
NOL	660	ND	ACENAPHTHENE	660	ND
(2-CHLOROETHYL)ETHER	660	ND	2,4-DINITROPHENOL	3200	ND
HLOROPHENOL	660	ND	4-NITROPHENOL	3200	ND
-DICHLOROBENZENE	660	ND	DIBENZOFURAN	660	ND
-DICHLOROBENZENE	660	ND	2,4-DINITROTOLUENE	660	ND
ZYL ALCOHOL	660	ИD	2,6-DINITROTOLUENE	660	ND
'-DICHLOROBENZENE	660	ND	DIETHYLPHTHALATE	660	ND
ETHYLPHENOL	660	ND	4-CHLOROPHENYL-PHENYLETHER	660	ND
- (2-CHLOROISOPROPYL)ETHER	660	ND	FLUORENE	660	ND
ETHYLFHENOL	660	ND	4-NITROANILINE	3200	ND
ITROSO-DI-n-PROPYLAMINE	660	ND	4,6-DINITRO 2-METHYLPHENOL	3200	ND
ACHLOROETHANE	660	MD	N-NITROSODIPHENYLAMINE(1)	660	ND
ROBENZENE	660	ND	4-BROMOPHENYL-PHENYLETHER	660	ND
FHORONE	660	ND	HEXACHLOROBENZENE	660	ND
NITROPHENOL	660	ND	PENTACHLOROPHENOL	660	ND
	660	ND	PHENANTHRENE	660	ND
IZOIC ACID	3200	ND	ANTHRACENE	660	ND
(2-CHLOROETHOXY)METHANE	660	ND	DI-N-BUTYLPHTHALATE	660	ND
	660	ND	FLUORANTHENE	660	ND
,4-TRICHLOROBENZENE	660	ND	PYRENE	660	ND
HTHALENE	660	ND	BUTYLBENZYLPHTHALATE	660	ND
CHLOROANILINE	660	ND	3.3-DICHLOROBENZIDINE	1320	ND
ACHLOROBUTADIENE	660	ND	BENZO(A)ANTHRACENE	660	ND
HLORO-3-METHYLPHENOL	660	ND	BIS(2-ETHYLHEXYL)PHTHALATE	660	ND
TETHYLNAPHTHALENE	660	ND	CHRYSENE	660	ND
	660	ND	DI-N-OCTYL PHTHALATE	660	ND
,6-TRICHLOROPHENOL	660	ND	BENZO(B)FLUORANTHENE	660	ND
4,5-TRICHLOROPHENOL	3200	ND	BENZO(K)FLUORANTHENE	660	ND
CHLORONAPHTHALENE	660	ND	BENZO(A)PYRENE	660	ND
NITROANILINE	3200	ND	INDENO(1,2,3-CD)PYRENE	660	ND
METHYLPHTHALATE	660	ND	DIBENZ(A,H)ANTHRACENE	660	ND
ENAPHTHYLENE	660	ND	BENZO(G,H,I)PERYLENE	660	ND
NITROANILINE	3200	ND			

QA/QC SURROGATE RECOVERIES

•TRODENZENE-	d5(23-120)	73%	2-FLUOROBIPHENY	L(30-115)	79%	TERPHENYL-d14	(18-137)	83%
iENOL-d5	(24-113)	85%	2-FLUOROPHENOL	(25-121)	69%	2,4,6-TRIBROMOPHEN	DL(19-122)	

^{; =} NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

REPORT:

DATE:

2371.02MT

05-03-90

CLIENT: DAMES & MOORE

11701 BORMAN DRIVE

ST. LOUIS, MISSOURI 63149

ATTN: DAVE PURINGTON

SAMPLE MATRIX: SOIL

SWLO # 2371.02

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: S4

_	PARAMETER	DET. LIMIT_	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
7			<u> </u>			
	TOTAL CYANIDES	1.0	ug/Kg	ND	04-27-90	SM 412D
7	TOTAL METALS					
	ARSENIC	2.0	mg/kg	5.60	04-25-90	SW 7060
~	LEAD	0.6	mg/kg	17.8	04-19-90	SW 7421
	MERCURY	0.1	mg/kg .	0.18	04-18-90	SW 7471
	SELENIUM	0.4	mg/kg	ND	04-24-90	SW 7740
_	THALLIUM	0.4	mg/kg	ND	04-19-90	SW 7841
•	ANTIMONY	6.0	mg/kg	6.7	04-19-90	SW 6010
	BERYLLIUM	1.0	mg/kg	ND	04-19-90	5W 6010
	CADMIUM	1.0	mg/kg	ND	04-19-90	SW 6010
	CHROMIUM	1.0	mg/kg	13.1	04-19-90	SW 6010
ŀ	COPPER	2.0	mg/kg	23.0	04-19-90	SW 6010
	NICKEL	2.0	mg/kg	16.3	04-19-90	SW 6010
_	SILVER	2.0	mg/kg	ND	04-19-90	SW 6010
	ZINC	2.0	mg/kg	56.8	04-19-90	SW 6010

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

SW = TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION #SW846, THIRD EDITION, NOVEMBER 1986

SM = STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16TH EDITION, 1985

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: 2371.02T

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWL0 # 2371.02

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: S4

ARAMETER	DET. LIMIT	UNIT	RESULTS	DATE EXTRACTED	DATE ANALYZED	METHOD REFERENCE
TOTAL EXTRACTABLE HY	DROCARBO	ONS				
ASOLINE	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
√IESEL	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
PEROSENE	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
F-4	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
APTHA	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
FUNKER C/#6 FUEL OIL	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
IISCELLANEOUS (1)	1.0	mg/Kg	6.3	04-19-90	04-20-90	GC/FID

QA/QC SURROGATE RECOVERY

NAPHTHALENE

100%

^{(1) =} ANALYSIS SHOWS MISCELLANEOUS FEAKS WHICH CANNOT BE IDENTIFIED AS ANY SPECIFIC PATTERN. THE RESPONSE FACTOR FOR DIESEL WAS USED.

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ COMPOUND FOUND IN BLANK AS WELL AS SAMPLE

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ UNABLE TO QUANTITATE DUE TO MATRIX INTERFERENCE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE, INC.

REPORT: 2371.02H

11701 BORMAN DRIVE

DATE: 05-03-90

ST. LOUIS, MO 63149 ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWL0 # 2371.02

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EFA METHODOLOGY

SAMPLE ID: 54

RESULTS REPORTED IN ug/Kg OR Parts Per Billion

-	DET.		
ERBICIDES	LIMIT	UNIT	RESULTS
,			
-2,4-D	80.0	ug/Kg	ND
,4,5-TP (SILVEX)	10.0	ug/Kg	ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

92.3%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY DUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

REPORT: 2371.02P

DATE: 05-03-90

LLIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.02

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

PROJECT: EARTH CITY

SAMPLE ID: S4

122

RESULTS REFORTED IN ug/Kg OR Farts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	23.6	ND
BETA-BHC	23.6	ND
GAMMA-BHC(LINDANE)	23.6	ND
DELTA-BHC	23.6	ND
HEPTACHLOR	23.6	ND
ALDRIN	23.6	ND
HEPTACHLOR EFOXIDE	23.6	ND
ENDOSULFAN I	23.6	ND
4,4-DDE	23.6	ND
DIELDRIN	47.2	ND
ENDRIN	47.2	ND
ENDOSULFAN II	47.2	ND
4,4-DDD	47.2	ND
ENDOSULFAN SULFATE	47.2	ND
4,4-DDT	47.2	ND
ENDRIN KETONE	47.2	ND
METHOXYCHLOR	236.0	ND
ALPHA-CHLORDANE	236.0	ND
GAMMA-CHLORDANE	236.0	ND
TOXAPHENE	472.0	ND
AROCHLOR-1221	236.0	. ND
AROCHLOR-1232	236.0	ND
AROCHLOR-1242	236.0	ND
AROCHLOR-1016	236.0	ND
AROCHLOR-1248	236.0	ND
AROCHLOR-1254	472.0	П
AROCHLOR-1260	472.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 88%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

- 3 & MOORE, INC. . _ 1 BORMAN DRIVE

-, LOUIS, MO 63149

: DAVID FURINGTON

REPORT: 2371.02B

DATE: 05-03-90

APLE MATRIX: SOIL

2371.02

OD REF.: SW846-8270, EPA METHODOLOGY

DUECT: EARTH CITY

TPLE ID: S4

DATE	SUBMITTED:	04-13-90
DATE	EXTRACTED:	04-17-90
DATE	ANALYZED :	04-26-90

MIVOLATILES	DET. LIMIT	RESULT	_	SEMIVOLATILES	DET. LIMIT	RESUL (ug/K	
- 10L	660	ND		ACENAPHTHENE	660	ND	
S(2-CHLOROETHYL)ETHER	660	ND		2,4-DINITROPHENOL	3200	ND	
~'ILOROPHENOL	660	ND		4-NITROPHENOL	3200	ND	
-DICHLOROBENZENE	660	ND		DIBENZOFURAN	660	ND	
DICHLOROBENZENE	660	ND		2,4-DINITROTOLUENE	660	ND	
ZIZYL ALCOHOL	660	ND		2,6-DINITROTOLUENE	660	ND	
-DICHLOROBENZENE	660	ИN		DIETHYLFHTHALATE	660	65	J
ETHYLPHENOL	660	ND		4-CHLOROPHENYL-PHENYLETHER	660	ND	
<pre>is(2-CHLOROISOPROFYL)ETHER</pre>	660	ND		FLUORENE	660	ИD	
ETHYLPHENOL	660	ND		4-NITROANILINE	3200	ND	
— ITROSO-DI-n-PROPYLAMINE	660	ND		4,6-DINITRO 2-METHYLPHENOL	3200	ND	
:XACHLOROETHANE	660	ND		N-NITROSODIFHENYLAMINE(1)	660	ND	
	660	ND		4-PROMOPHENYL-PHENYLETHER	660	ND	
PHORONE	660	ND		HEXACHLOROBENZENE	660	ND	
ITROPHENOL	660	ИD	•	PENTACHLOROPHENOL	660	ND	
4-DIMETHYLFHENOL	660	ND		PHENANTHRENE	660	40	J
ZOIC ACID	3200	140.	J	ANTHRACENE	660	ND	
(2-CHLOROETHOXY) METHANE	660	ND		DI-N-BUTYLPHTHALATE	660	100	J
,4-DICHLOROPHENOL	660	ND		FLUORANTHENE	660	ND	
4-TRICHLOROBENZENE	660	ND		PYRENE	660	30	J
'HTHALENE	660	ND		BUTYLBENZYLFHTHALATE	660	50	J
CHLOROANILINE	660	ND		3,3-DICHLOROBENZIDINE	1320	ND	
- EYACHLOROBUTADIENE	660	ND		BENZO(A)ANTHRACENE	660	ND	
HLORO-3-METHYLPHENOL	660	ND		BIS(2-ETHYLHEXYL)PHTHALATE	660	190	J
1ETHYLNAPHTHALENE	660	ND		CHRYSENE	660	ND	
EXACHLOROCYCLOFENTADIENE	660	ND		DI-N-OCTYL PHTHALATE	660	MD	
1,4-TRICHLOROPHENOL	660	ND		BENZO(B)FLUORANTHENE	660	ND	
1,5-TRICHLOROPHENOL	3200	ND		BENZO(K)FLUORANTHENE	660	ND	
CHLORONAPHTHALENE	660	ND		BENZO(A)PYRENE	660	ND	
— ` NITROANILINE	3200	ND		INDENO(1,2,3-CD)PYRENE	660	ND	
"ETHYLPHTHALATE	660	ND		DIBENZ(A,H)ANTHRACENE	660	ND	
ENAPHTHYLENE	660	ND		BENZO(G,H,I)PERYLENE	660	ND	
. INITROANILINE	3200	ND					

QA/QC SURROGATE RECOVERIES

TROBENZEME-d5(23-120) 83% 2-FLUOROBIPHENYL(30-115) 88% TERPHENYL-d14 (19-137) 86% JENOL-d5 (24-113) 96% 2-FLUOROPHENOL (25-121) 80% 2,4,6-TRIBROMOPHENOL(19-122) 103%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

^{, =} ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

F ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROSATE RECOVERY DUTSIDE OF GC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE

REPORT: 2371.03MT

11701 BORMAN DRIVE

ST. LOUIS, MISSOURI 63149 DATE: 05-03-90

ATTN: DAVE PURINGTON

SAMPLE MATRIX: SOIL

SWL0 # 2371.03

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: S3

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
TOTAL CYANIDES	1.0	ug/Kg	ND	04-27-90	SM 412D
TOTAL METALS					
ARSENIC	2.0	mg/kg	2.12	04-25-90	SW 7060
TLEAD .	0.6	mg/kg	12.4	04-19-90	SW 7421
MERCURY	0.1	mg/kg	· ND	04-18-90	SW 7471
SELENIUM	0.4	mg/kg	ND	04-24-90	SW 7740
- THALLIUM	0.4	mg/kg	ND	04-19-90	SW 7841
ANTIMONY	6.0	mg/kg	ND	04-19-90	SW 6010
BERYLLIUM	1.0	mg/kg	ND	04-19-90	SW 6010
CADMIUM	1.0	mg/kg	ND	04-19-90	SW 6010
CHROMIUM	1.0	mg/kg	5.5	04-19-90	SW 6010
COPPER	2.0	mg/kg	15.2	04-19-90	SW 6010
NICKEL	2.0	mg/kg	9.7	04-19-90	SW 6010
→ SILVER	2.0	mg/kg	ND	04-19-90	SW 6010
ZINC	2.0	mg/kg	32.8	04-19-90	SW 6010

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

SW = TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION #SW846, THIRD EDITION, NOVEMBER 1986

SM = STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16TH EDITION, 1985

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWL0 # 2371.03

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: SJ

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE EXTRACTED	DATE ANALYZED	METHOD REFERENCE
TOTAL EXTRACTABLE HY	<u>DROCARBOI</u>	<u> </u>				
GASOLINE	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
DIESEL	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
KEROSENE	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
JP-4	1.0	mg/Kg	ND ·	04-19-90	04-21-90	GC/FID
NAPTHA	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
SUNKER C/#6 FUEL DIL	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
MISCELLANEOUS (1)	1.0	mg/Kg	12.0	04-19-90	04-21-90	GC/FID

QA/QC SURROGATE RECOVERY

NAPHTHALENE

100%

REPORT: 2371.03T

05-03-90

DATE:

^{(1) =} ANALYSIS SHOWS MISCELLANEOUS FEAKS WHICH CANNOT BE IDENTIFIED AS ANY SPECIFIC PATTERN. THE RESPONSE FACTOR FOR DIESEL WAS USED.

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ COMPOUND FOUND IN BLANK AS WELL AS SAMPLE

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ UNABLE TO QUANTITATE DUE TO MATRIX INTERFERENCE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE, INC. CLIENT:

REPORT: 2371.03H

11701 BORMAN DRIVE

ST. LOUIS, MD 63149

DATE: 05-03-90

ATTN: DAVID FURINGTON

SAMPLE MATRIX: SOIL

SWLO # 2371.03

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

SAMPLE ID: S3

RESULTS REPORTED IN ug/Kg OR Parts Fer Billion

_	DET.		
ERBICIDES	LIMIT	UNIT	RESULTS
,4-D	80.0	ug/Kg	ND
,4,5-TF (SILVEX)	10.0	ug/Kg	ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

91.9%

4D = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF GC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MOORE, INC.

REPORT: 2371.03P

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

DATE: 05-03-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWL0 # 2371.03

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EFA METHODOLOGY

PROJECT: EARTH CITY

SAMPLE ID: S3

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	19.0	ND
BETA-BHC	19.0	ND
GAMMA-BHC(LINDANE)	19.0	ND
DELTA-BHC	19.0	ND
HEFTACHLOR	19.0	ИD
ALDRIN	19.0	14D
HEFTACHLOR EFOXIDE	19.0	ND
ENDOSULFAN I	19.0	ND
4,4-DDE	19.0	В
DIELDRIN	38.0	ND
ENDRIN	38.0	ND
ENDOSULFAN II	38.0	ND
4,4-DDD	38.0	ND
ENDOSULFAN SULFATE	38.0	ND
4,4-DDT	38.0	ND
ENDRIN KETONE	38.0	ND
METHOXYCHLOR	190.2	ND
ALPHA-CHLORDANE	190.2	ND
GAMMA-CHLORDANE	190.2	ND
TOXAPHENE	380.5	ND
AROCHLOR-1221	190.2	ND
AROCHLOR-1232	190.2	ND
AROCHLOR-1242	190.2	ND
AROCHLOR-1016	190.2	ND
AROCHLOR-1248	190.2	ND
AROCHLOR-1254 AROCHLOR-1260	380.5	ND
PROUNLUK-1260	380.5	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 81:

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ES & MOORE, INC. 01 BORMAN DRIVE LOUIS, MO 63149 N: DAVID PURINGTON

REPORT: 2371.03B

DATE: 05-03-90

IPLE MATRIX: SOIL 10 # 2371.03

HOD REF.: SW846-8270, EPA METHODOLOGY

jject: EARTH CITY

JPLE ID: S3

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED : 04-26-90

	DET.' LIMIT	RESULT	
NOL 660 ND ACENAPHTHENE	660	ND	
	3200	ND	
CHLOROPHENOL 660 ND 4-NITROPHENOL	3200	ND	
G-DICHLOROBENZENE 660 ND DIBENZOFURAN	660	ND	
4-DICHLOROBENZENE 660 ND 2,4-DINITROTOLUENE	660	ND	
NZYL ALCOHOL 660 ND 2,6-DINITROTOLUENE	660	ND	
	660	ND	
METHYLPHENOL 660 ND 4-CHLOROPHENYL-PHENYLETHER 6	660	ND	
	660	ИD	
METHYLFHENOL 660 ND 4-NITROANILINE	3200	ND	
	3200	ND	
	660	ND	
	660	ND	
DPHORONE 660 ND HEXACHLOROBENZENE	660	ND	
	660	ND	
	660	30	J
NZOIC ACID 3200 35 J ANTHRACENE	660	ND	
	660	10	J
	660	40	J
	660	50	J
	660	ND	
CHLOROANILINE 660 ND 3,3-DICHLOROBENZIDINE	1320	ND	
XACHLOROBUTADIENE 660 ND BENZO(A)ANTHRACENE	660	ND	
	660	ND	
	660	ND	
XACHLOROCYCLOPENTADIENE 660 ND DI-N-OCTYL PHTHALATE	660	ND	
4,6-TRICHLOROPHENOL 660 ND BENZO(B)FLUORANTHENE	660	ND	
4,5-TRICHLOROPHENOL 3200 ND BENZO(K)FLUORANTHENE	660	ND	
CHLORONAPHTHALENE 660 ND BENZO(A)PYRENE	660	ND	
NITROANILINE 3200 ND INDENO(1,2,3-CD)PYRENE	660	ND	
#INCLUSTED AAO NO DIRENZA UNANTURACENE	660	ND	
**ENAPHTHYLENE 660 ND BENZO(G,H,I)PERYLENE	660	ND	
NITROANILINE 3200 ND			

QA/QC SURROGATE RECOVERIES

I KURENZENE-	d5(23-120)	70%	2-FLUOROBIPHENY	L(30-115)	71%	TERPHENYL-d14	(18-137)	90%
¹ ENOL-d5	(24-113)	83%	2-FLUOROPHENOL	(25-121)	67%	2.4.6-TRIBROMOFHEN	DL(19-122)	79%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁻ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE = SURROGATE RECOVERY DUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

REPORT: 2371.04MT

DATE: 05-03-90

CLIENT: DAMES & MOORE

11701 BORMAN DRIVE

ST. LOUIS, MISSOURI 63149

ATTN: DAVE PURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.04

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY SAMPLE ID: COMP. 2

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
PHRHITETER	<u> </u>	CIVII	RESOLIS	HANDLIZED	INCT ENCE
TOTAL CYANIDES	1.0	ug/Kg	ND	04-27-90	SM 412D
TOTAL METALS					
ARSENIC	2.0	mg/kg	7.41	04-25-90	SW 7060
LEAD	0.6	mg/kg	. 15.9	04-19-90	SW 7421
MERCURY	0.1	mg/kg	ND	04-18-90	SW 7471
SELENIUM	0.4	mg/kg	ND	04-24-90	SW 7740
THALLIUM	0.4	mg/kg	ND	04-19-90	SW 7841
ANTIMONY	4.0	mg/kg	7.4	04-19-90	SW 6010
BERYLLIUM	1.0	mg/kg	ND	04-19-90	SW 6010
CADMIUM	1.0	mg/kg	ND	04-19-90	SW 6010
CHROMIUM	1.0	mg/kg	15.5	04-19-90	SW 6010
COPPER	2.0	mg/kg	25.0	04-19-90	SW 6010
NICKEL	2.0	mg/kg	19.2	04-19-90	SW 6010
SILVER	2.0	mg/kg	ND	04-19-90	SW 6010
ZINC	2.0	mg∕kg	57.4	04-19-90	SW 6010

. 3

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

SW = TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION #SW846,

THIRD EDITION, NOVEMBER 1986

SM = STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER,
16TH EDITION, 1985

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWL0 # 2371.04

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY SAMPLE ID: COMP. 2

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE EXTRACTED	DATE ANALYZED	METHOD REFERENCE
TOTAL EXTRACTABLE HY	DROCARBO	<u>NS</u>	•			
3						
GASOLINE	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
-DIESEL	1.0	mg/Kg	ND	04-17-90	04-21-90	GC/FID
KEROSENE	1.0	mg/Kg	ND .	04-19-90	04-21-90	GC/FID
JF-4	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
NAPTHA	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
BUNKER C/#6 FUEL DIL	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
11SCELLANEOUS (1)	1.0	mg/Kg	5.1	04-19-90	04-21-90	GC/FID

GA/GC SURROGATE RECOVERY

NAPHTHALENE

95%

REPORT: 2371.04T

DATE: 05-03-90

^{(1) =} ANALYSIS SHOWS MISCELLANEOUS PEAKS WHICH CANNOT BE IDENTIFIED AS ANY SPECIFIC PATTERN. THE RESPONSE FACTOR FOR DIESEL WAS USED.

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ COMPOUND FOUND IN BLANK AS WELL AS SAMPLE

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ UNABLE TO QUANTITATE DUE TO MATRIX INTERFERENCE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE, INC.

REPORT: 2371.04H

11701 BORMAN DRIVE ST. LOUIS, MO 63149

DATE: 05-03-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWLO # 2371.04

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

SAMPLE ID: COMP. 2

RESULTS REPORTED IN ug/Kg OR Parts Per Billion

RBICIDES	DET. LIMIT	UNIT	RESULTS
_2.4-D	80.0	ug/Kg	ND
4,5-TP (SILVEX)	10.0	ug/Kg	ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

78.2%

D = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

: = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

_LIENT: DAMES & MOORE, INC.

REPORT: 2371.04P

11701 BORMAN DRIVE ST. LOUIS, MO 63149

DATE: 05-03-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWLO # 2371.04

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

PROJECT: EARTH CITY SAMPLE ID: COMP. 2

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALFHA-BHC	21.7	ND
BETA-BHC	21.7	ND
GAMMA-BHC(LINDANE)	21.7	ND
DELTA-BHC	21.7	ND
HEFTACHLOR	21.7	П
ALDRIN	21.7	ND
HEPTACHLOR EFOXIDE	21.7	ND
ENDOSULFAN I	21.7	ИD
4,4-DDE	21.7	ND
DIELDRIN	43.4	ND
ENDRIN	43.4	ND
ENDOSULFAN II	43.4	ND
4,4-DDD	43.4	ND
ENDOSULFAN SULFATE	43.4	ND
4,4-DDT	43.4	ND
ENDRIN KETONE	43.4	ND
METHOXYCHLOR	217.1	ND
ALPHA-CHLORDANE	217.1	ND
GAMMA-CHLORDANE	217.1	ND
TOXAPHENE	434.2	ND
AROCHLOR-1221	217.1	ND
AROCHLOR-1232	217.1	ND
AROCHLOR-1242	217.1	ND
AROCHLOR-1016	217.1	ND
AROCHLOR-1248	217.1	ND
AROCHLOR-1254	434.2	ND
AROCHLOR-1260	434.2	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 79%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

S & MOORE, INC.

1 BORMAN DRIVE

Louis, MO 63149

... LE MATRIX: SOIL

¬n # 2371.04

. IOD REF.: SW846-8270, EPA METHODOLOGY

ECT: EARTH CITY AMPLE ID: COMP. 2

REPORT: 2371.04B

DATE: 05-03-90

DATE SUBMITTED: 04-13-90

DATE EXTRACTED: 04-17-90

DATE ANALYZED : 04-26-90

	DET. LIMIT	RESULTS		SEMIVOLATILES	DET. LIMIT	RESUL (ug/K	
- 10L	660	ND		ACENAPHTHENE	660	ND	
(2-CHLOROETHYL)ETHER	660	ND		2,4-DINITROPHENOL	3200	ND	
-\$HLOROPHENOL	660	ND		4-NITROPHENOL	3200	ND	
-DICHLOROBENZENE	660	ND		DIBENZOFURAN	660	ND	
-DICHLOROBENZENE	660	ND		2,4-DINITROTOLUENE	660	ND	
ENZYL ALCOHOL	660	ND		2,6-DINITROTOLUENE	660	ND	
-DICHLOROBENZENE	660	ND		DIETHYLPHTHALATE	660	ND	
ETHYLPHENOL	660	ND		4-CHLOROPHENYL-PHENYLETHER	660	ND	
13(2-CHLOROISOPROFYL)ETHER	660	ND		FLUORENE	660	ND	
TETHYLPHENOL	660	ND		4-NITROANILINE	3200	ND	
ITROSO-DI-n-PROPYLAMINE	660	ИD		4,6-DINITRO 2-METHYLPHENOL		ND	
ACHLOROETHANE	660	ND		N-NITROSODIPHENYLAMINE(1)	660	ND	
TROBENZENE	560	MD		4-BROMOPHENYL-PHENYLETHER	660	ND	
PHORONE	660	ND		HEXACHLOROBENZENE	660	ND	
ITROPHENOL	660	ФИ		FENTACHLOROPHENOL	660	ND	
.4-DIMETHYLFHENOL	660	ЫD		FHENANTHRENE	660	30	J
TZOIC ACID	3200	30 J	J	ANTHRACENE	660	ND	-
(2-CHLORDETHOXY)METHANE	660	ND		DI-N-BUTYLFHTHALATE	660	50	J
DICHLOROFHENOL	660	ND		FLUORANTHENE	660	50	J
→,4-TRICHLOROBENZENE	660	ND		FYRENE	660	30	j
HTHALENE	660	ND		BUTYLBENZYLPHTHALATE	660	ND	•
HLORDANILINE	660	ND		3,3-DICHLOROBENZIDINE	1320	ND	
EXACHLOROBUTADIENE	660	ND		BENZO(A)ANTHRACENE	660	ND	
HLORO-3-METHYLPHENOL	660	ND		BIS(2-ETHYLHEXYL)PHTHALATE	660	ND	
ETHYLNAFHTHALENE	660	10 J	Ī	CHRYSENE	660	ND	
ACHLOROCYCLOPENTADIENE	660	ND		DI-N-OCTYL PHTHALATE	660	ND	
	660.	ND		BENZO(B)FLUORANTHENE	660	ND	
,5-TRICHLOROPHENOL	3200	ND		BENZO(K)FLUORANTHENE	660	ND:	غ ني
HLORONAPHTHALENE	660	ND		BENZO(A)PYRENE	660	ND.	
:-NITROANILINE	3200	ND		INDENO(1,2,3-CD)PYRENE	660	ND ND	
]ETHYLPHTHALATE	660	ND		DIBENZ(A,H)ANTHRACENE	660	ND	
CNAPHTHYLENE	660	ND		BENZO(G,H,I)PERYLENE	660	ND	11/
NITROANILINE	3200	ND		ALIATO (DAITAT) FERTLENE	000	עאו	

QA/QC SURROGATE RECOVERIES

ROBENZENE-d5(23-120) 74% 2-FLUOROBIPHENYL(30-115) 79% TERPHENYL-d14 (18-137) 89% INOL-d5 (24-113) 89% 2-FLUOROPHENOL (25-121) 70% 2,4,6-TRIBROMOPHENOL(19-122) 91%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

^{] =} ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE, INC.

REPORT: 2371.05H

11701 BORMAN DRIVE

DATE: 05-03-90

ST. LOUIS, MO 63149 ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.05

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EFA METHODOLOGY

SAMPLE ID: COMP. 1

RESULTS REPORTED IN ug/Kg OR Parts Fer Billion

SULTS
ND
ND
N

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

99.4%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149 ATTN: DAVID PURINGTON

DATE: 05-03-90

REPORT: 2371.05P

SAMPLE MATRIX: SOIL

SWL0 # 2371.05

DATE SUBMITTED: 04-13-90
DATE EXTRACTED: 04-17-90
DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

PROJECT: EARTH CITY SAMPLE ID: COMP. 1

RESULTS REPORTED IN ug/Kg GR Farts Fer Billion (FFB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALFHA-BHC	21.2	ND
BETA-BHC	21.2	ND
GAMMA-BHC(LINDANE)	21.2	ND
DELTA-BHC	21.2	ND
HEFTACHLOR	21.2	ND
ALDRIN	21.2	מא
HEPTACHLOR EPOXIDE	21.2	ИD
ENDOSULFAN I	21.2	ND
4,4-DDE	21.2	ND
DIELDRIN	42.3	ИД
ENDRIN	42.3	ND
ENDOSULFAN II	42.3	ND
4,4-DDD	42.3	ND
	42.3	ND
4,4-DDT	42.3	ND
ENDRIN KETONE	42.3	ND
METHOXYCHLOR	211.6	ND
ALPHA-CHLORDANE	211.6	ND
GAMMA-CHLORDANE	211.6	ND
TOXAPHENE	423.3	ND
AROCHLOR-1221	211.6	ND
AROCHLOR-1232	211.6	ND
AROCHLOR-1242	211.6	ND
AROCHLOR-1016	211.6	ND
AROCHLOR-1248	211.6	ND
AROCHLOR-1254	423.3	ND
AROCHLOR-1260	423.3	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 102%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ES & MOORE, INC. 1701 BORMAN DRIVE LOUIS, MO 63149 N: DAVID PURINGTON

REPORT: 2371.05B

DATE: 05-03-90

PLE MATRIX: SOIL 0 # 2371.05 DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90

THOD REF.: SW846-8270, EPA METHODOLOGY

DATE ANALYZED: 04-26-90

ROJECT: EARTH CITY PLE ID: COMP. 1

THIS ATTLES	DET. LIMIT	RESULTS	CCMTUOLATTI CC	DET. LIMIT	RESULTS	
TIVOLATILES	LIMIT	(ug/Kg)	SEMIVOLATILES	<u>LINII</u>	(ug/Kg)	-
LENOL	660	ND	ACENAPHTHENE	660	MD	
IS(2-CHLOROETHYL)ETHER	660	ИD	2,4-DINITROPHENOL	3200	ND	
CHLOROPHENOL	660	ND	4-NITROPHENOL	3200	ND	
S-DICHLOROBENZENE	660	ND	DIBENZOFURAN	660	ND	
.4-DICHLOROBENZENE	660	ND	2,4-DINITROTOLUENE	660	ND	
"TIZYL ALCOHOL	660	ND	2,6-DINITROTOLUENE	660	ND	
2-DICHLOROBENZENE	660	ND	DIETHYLFHTHALATE	660	ND	
-METHYLFHENOL	660	ND	4-CHLOROPHENYL-PHENYLETHER	660	ND	
-16(2-CHLOROISOFROFYL)ETHER	660	ND	FLUORENE	660	ND	
METHYLPHENOL	660	ND	4-NITROANILINE	3200	ND	
T NITROSO-DI-n-PROPYLAMINE	660	ND	4,6-DINITRO 2-METHYLPHENOL	3200	ND	
<u>IEXACHLOROETHANE</u>	660	ND	N-NITROSODIPHENYLAMINE(1)	660	ND	
TROBENZENE	660	ИD	4-BROMOPHENYL-PHENYLETHER	660	ND	
₽H0%0NE	660	ND	HEXACHLOROBENZENE	660	ND	
I-NITROPHENOL	660	ND	PENTACHLOROPHENOL	660	ND	
- 7=4-DIMETHYLFHENOL	660	ND	PHENANTHRENE	660	ND	
NZOIC ACID	3200	ND	ANTHRACENE	660	ND	
_IS(2-CHLOROETHOXY)METHANE	660	ND	DI-N-BUTYLPHTHALATE	660	ND	
2 ₄ 4-DICHLOROPHENOL	660	ИD	FLUORANTHENE	660	30 3	
2,4-TRICHLOROBENZENE	660	ND	PYRENE	660	30 3	3
- APHTHALENE	660	ND	BUTYLBENZYLPHTHALATE	660	ИD	
4-CHLOROANILINE	660	ND	3,3-DICHLOROBENZIDINE	1320	ND	
-XACHLOROBUTADIENE	660	ND	BENZO(A)ANTHRACENE	660	ND	
_CHLORO-3-METHYLPHENOL	660	ND	BIS(2-ETHYLHEXYL)PHTHALATE	660	ND	
2-METHYLNAPHTHALENE	660	ND	CHRYSENE	660	ND	
_ "EXACHLOROCYCLOFENTADIENE	660	ND	DI-N-OCTYL PHTHALATE	660	ND	
4,6-TRICHLOROPHENOL	660	ND	BENZO(B)FLUORANTHENE	660	ND	
74,5-TRICHLOROPHENOL	3200	ND	BENZO(K)FLUORANTHENE	660	ND	
2-CHLORONAPHTHALENE	660	ND	BENZO(A)PYRENE	660	ND	
-NITROANILINE	3200	ND	INDENO(1,2,3-CD)PYRENE	660	ND	
_METHYLPHTHALATE	660	ФИ	DIBENZ(A,H)ANTHRACENE	660	ND	
ACENAPHTHYLENE	660	ND	BENZO(G,H,I)PERYLENE	660	ND	
NITROANILINE	3200	ND	<i>,</i> .			

QA/QC SURROGATE RECOVERIES

#ITROBENZENE-d5(23-120) 72% 2-FLUOROBIPHENYL(30-115) 78% TERPHENYL-d14 (18-137) 84% PHENOL-d5 (24-113) 84% 2-FLUOROPHENOL (25-121) 67% 2,4,6-TRIBROMOPHENOL(19-122) 89%

⁴D = NOT DETECTED ABOVE QUANTITATION LIMIT

⁻⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF GC LIMITS

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ANALYTICAL REPORT

DAMES & MOORE

REPORT: G2698

11701 Borman Drive

St. Louis. Missouri 63149

04/30/90 REPORT DATE:

SWLO IDENTIFICATION

SAMPLE NO.:

2371.01 - 2371.05

DATE RECEIVED: 04/13/90

QA/QC

DESCRIPTION			PARAMETER	RESULTS		
	METHOD BLANK	04/19/90	ANTIMONY	<6	mg/Kg	
	METHOD BLANK	04/19/90	BERYLLIUM	<1	mg/Kg	
	METHOD BLANK	04/19/90	CADMIUM	<1	mg/Kg	
	METHOD BLANK	04/19/90	CHROMIUM	<1	mg/Kg	
	METHOD BLANK	04/19/90	COPPER	<2	mg/Kg	
	METHOD BLANK	04/19/90	NICKEL	<2	mg/Kg	
	METHOD BLANK	04/19/90	SILVER	<2	mg/Kg	
	METHOD BLANK	04/19/90	ZINC	<2	mg/Kg	

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

"LIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: G2698.2

DATE: 05-03-90

SAMPLE MATRIX: SOIL SWLO # METHOD BLANK

DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EFA METHODOLOGY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/Kg OR Parts Per Billion

HERBICIDES	DET. LIMIT	UNIT	RESULTS
2,4-D	80.0	ug/Kg·	ND
-2,4,5-TF (SILVEX)	10.0	ug/Kg	ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

45.2%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

.IENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: G2698.3

DATE: 05-03-90

SAMPLE MATRIX: SOIL SWLO # METHOD BLANK

DATE EXTRACTED: 04-17-90
DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

PROJECT: EARTH CITY SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	16.0	ИД
BETA-BHC	16.0	ND
GAMMA-BHC(LINDANE)	16.0	ИD
DELTA-BHC	16.0	ND
HEFTACHLOR	16.0	ND
ALDRIN	16.0	ND
HEPTACHLOR EPOXIDE	16.0	ND
ENDOSULFAN I	16.0	ИN
4,4-DDE	16.0	ND
DIELDRIN	32.0	MD
ENDRIN	32.0	D
ENDOSULFAN II	32.0	ND
4,4-DDD	32.0	ND
ENDOSULFAN SULFATE	32.0	ND
4,4-DDT	32.0	ND
ENDRIN KETONE	32.0	ND
METHOXYCHLOR	160.0	ND
ALPHA-CHLORDANE	160.0	ND
GAMMA-CHLORDANE	160.0	ND
TOXAPHENE	320.0	ND
AROCHLOR-1221	160.0	ND
AROCHLOR-1232	160.0	ND
AROCHLOR-1242	160.0	ND
AROCHLOR-1016	160.0	ND
AROCHLOR-1248	160.0	ND
AROCHLOR-1254	320.0	ND
AROCHLOR-1260	320.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 24%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY DUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

MES & MOORE, INC. 701 BORMAN DRIVE

.. LOUIS, MO 63149 TH: DAVID PURINGTON REFORT: G2698.4

DATE: 05-03-90

TPLE MATRIX: SOIL

-40 # METHOD BLANK

THOD REF.: SW846-8270, EPA METHODOLOGY

DATE EXTRACTED: 04-17-90

DATE ANALYZED: 04-26-90

DJECT: EARTH CITY AMPLE ID: METHOD BLANK

MIVOLATILES	DET. LIMIT	RESULTS (ug/Kg)	<u>SEMIVOLATILES</u>	DET. LIMIT	RESULTS (ug/Kg)
'INOL	660	ND	ACENAPHTHENE	660	ND
3(2-CHLOROETHYL)ETHER	660	ND	2,4-DINITROPHENOL	3200	ND
-CHLOROPHENOL	660	ND	4-NITROPHENOL	3200	ND
5-DICHLOROBENZENE	660	ND	DIBENZOFURAN	660	ND
4-DICHLOROBENZENE	660	ND	2,4-DINITROTOLUENE	660	ND
NZYL ALCCHOL	660	ND	2,6-DINITROTOLUENE	660	ND
2-DICHLOROPENZENE	660	ND	DIETHYLPHTHALATE	660	ND
METHYLFHENOL	660	ND	4-CHLOROPHENYL-PHENYLETHER	660	ND
S(2-CHLORDISOPROPYL)ETHER	660	ND	FLUORENE	660	ND
- TETHYLPHENOL	660	ND	4-NITROANILINE	3200	ND
NITROSO-DI-n-FROFYLAMINE	660	ND	4,6-DINITRO 2-METHYLPHENOL		ND
KACHLOROETHANE	660	ND	N-NITROSODIPHENYLAMINE(1)	660	ND
ITROBENZENE	660	ND	4-BROMOPHENYL-PHENYLETHER	660	ND
PPHORONE	660	ND	HEXACHLOROBENZENE	650	ND
NITROPHENOL	660	ND	PENTACHLOROPHENOL	660	ND
,4-DIMETHYLPHENOL	660	ND	PHENANTHRENE	660	ND
VZGIC ACID	3200	ND	ANTHRACENE	660	ND
3(2-CHLOROETHOXY)METHANE	660	ND	DI-N-BUTYLPHTHALATE	660	ND
A-DICHLOROPHENOL	660	ND	FLUORANTHENE	660	ND
_2,4-TRICHLOROBENZENE	660	ND	PYRENE	660	ND
PHTHALENE	660	ND	BUTYLBENZYLPHTHALATE	660	ND
-CHLORDANILINE	660	ND	3,3-DICHLOROBENZIDINE	1320	ND
EXACHLOROBUTADIENE	660	ND	BENZO(A)ANTHRACENE	660	ND
THLORO-3-METHYLPHENOL	660	ND	BIS(2-ETHYLHEXYL)PHTHALATE	660	ND
TETHYLNAPHTHALENE	660	ND	CHRYSENE	660	ND
EXACHLOROCYCLOPENTADIENE	660	ND	DI-N-OCTYL PHTHALATE	660	ND
4,6-TRICHLOROPHENOL	660	ND	BENZO(B)FLUORANTHENE	660	ND
1,5-TRICHLOROPHENOL	3200	ND	BENZO(K)FLUORANTHENE	660	ND
CHLORONAPHTHALENE	660	ND	BENZO(A)PYRENE	660	MD
I-NITROANILINE	3200	ND	INDENO(1,2,3-CD)PYRENE	660	ND
1ETHYLPHTHALATE	660	ND	DIBENZ(A,H)ANTHRACENE	660	ND
_NAPHTHYLENE	660	ND	BENZO(G,H,I)PERYLENE	660	ND
NITROANILINE	3200	ND			

QA/QC SURROGATE RECOVERIES

TROBENZENE-d5(23-120) 65% 2-FLUOROBIPHENYL(30-115) 64% TERPHENYL-d14 (18-137) 65% ≝NOL-d5 (24-113) 76% 2-FLUOROPHENOL (25-121) 62% 2,4,6-TRIBROMOPHENOL(19-122) 68%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF GC LIMITS

APPENDIX D Soil Boring Logs

-

\ h. ---

~ —

.

Dames & Moore LOCATION OF BORING JOB NO. LOCATION CLIENT 19943-002 FORD Early City MO MW/01 MWIOI 5 Land J: 11 (1405/100W GAMMA Grid) 2 OF Cartinuous DRILLING START FINISH TIME WATER LEVEL 1:15 TIME DATE DATE DATE 4-11-90 CASING DEPTH DEPTH IN FEET Topsoil elark Grown sile TOP Soil 1+/med Grus 2 Grown 3 C5 60/30 2 05 5-10 Surce / o 10-15 3 160/ 15 15 20 file Soud SEAD 5640 20

14

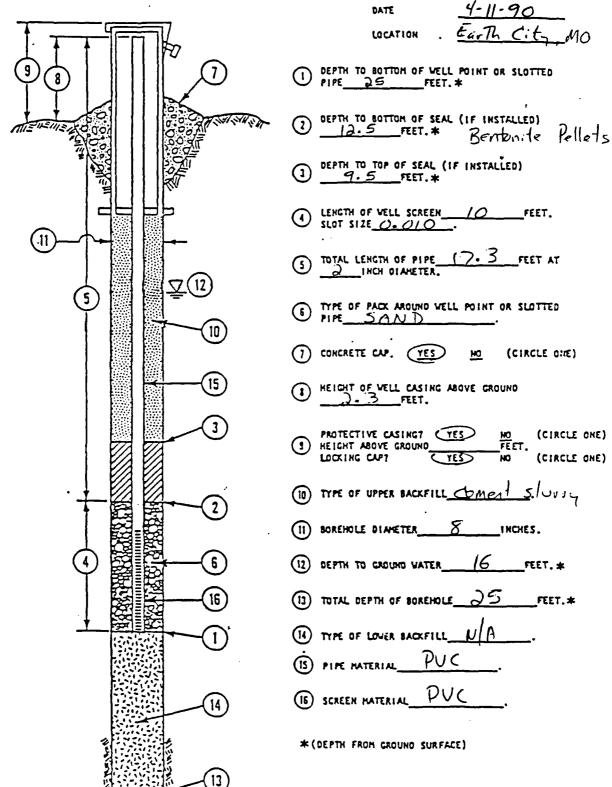
-	LOCA	TON OF	BORING							JOB NO.	CLIEN	iT .		LOCA	ATION	
										19943.00	2 Fo	21				i
	1								ŀ			<u> </u>			BORING N	10.
	1								ł	DRILLING METHO	00:					
									ļ						MWI	<i>J/</i>
_	l						•]						SHEET	<u> </u>
1	1								ł	SAMPLING METH	100:			1	2.	rd
	į								Ī						DRILL	JNG
	1								Ì						START	FINISH
- }	İ								}				г г		TIME	TIME
-	i i								1	WATER LEVEL		 	 			
1	1								l	TIME		<u> </u>				
.]									-	DATE			1		DATE	DATE
1	DATU	A					ELEVATION	ON	ſ	CASING DEPTH						
3				-0 A				T	SURFACE	CONDITIONS:			1	,		
İ	SAMPLER	INCHES DBIVEN S	DEPTH OF CASING	ON A	BLOWS/FT. SAMPLER	NUMBER OF RINGS	ᆂ	ıΞ								
1	1 4 E	INCHES DBIN THECHES	AS AS	2/2 =	WS MPI	ABE	DEPTH IN FEET	SOIL								
<u> </u>	, vs	/ BS	DE C	SAMPLE	SA.	چ څ	οž	ی ت								_
- 1	<u> </u>															
- 1	CS	60/		5/			201	-	 	ne silt	540	10				
_	۲	24		20	J.5		↓	4	<u> </u>	-)					·	
أيخم							1	1		4						
							1 L	1								
	1						2	}	<u></u>							
(= 2	L							}								
-																
1				/			3]	ſ	1						
i								1		1						
7	1	/					4	1		1						
							しった	1	1	/						
	1			//			2s	COB	·							
-							1	2.5								
					i		6	25'	 							
							†	1								
	}						7 -	1	 							
	<u> </u>	$K \rightarrow J$					{ ├	1	ļ							
	1				i		8 -	1	<u></u>							
_	}	$\leftarrow \downarrow$		$Y \rightarrow J$			1 }	-								
<i>,</i> 🚅							9-	4	 _							
	<u> </u>]	4								
- 1							0		ļ							
1							1 1	1		· 						
							1]								
	L] 'L]								
ء ل							2]								
] 4[}								
Ĺ] _[{							
10		\vee					3	1								
							1 .	1								
1	1						4	1						*		
1 1							1	1	<u> </u>				 			
,T2	1	/					5	1								
DATE.	-			Y 			1 }	1								
							6	1	 	······································			·			
L	-	K	 	K-			┤╶├	-					···-			
							7	-	<u> </u>							
<u> </u>	}	<u>К</u> ,		Υ <u>,</u>		<u> </u>	1 }	1	<u> </u>		 .					
100-11		/	l				8		<u> </u>							
		/		/_] [1								
y		1 /					9	}								
ĵ			<u></u> .] ۲									
-	_		1	1			1 . [7								
= 5			}			}	0	1								
•			-	<i>-</i>			·		1							

Dames & Moore JOB NO. LOCATION OF BORING LOCATION 19943002 FORD Earl (:4 MO DRILLING METHOD: MW/02 3/4 ID Hollow Sten Aug MW/02 SAMPLING METHOD: 3" ID Continuous Samples Cardfill START FINISH TIME WATER LEVEL 19:5 10.00 TIME DATE DATE 4-11-90 CASING DEPTH ELEVATION SURFACE CONDITIONS NUMBER OF DEPTH IN FEET SOIL 70p50:1 ပ 0 dak 60001 5:18 1 fire souly silt 11 Grown 2 3 CS 60/30 05 It Grown Medium Schol 7 8 10 10/15 3 60 CS 15 7 8 60thin 3" wet 20

LOCATION OF BORING JOB NO. CLIENT LOCATION 19943.002 FORD BORING NO. DRILLING METHOD: MUSIOZ SHEET a or 2 SAMPLING METHOD: DRILLING START TIME TIME WATER LEVEL TIME DATE DATE DATE CASING DEPTH ELEVATION DATUM SURFACE CONDITIONS: BLOWS/FT. SAMPLER DEPTH IN FEET Z0 No retrained 2 3 2 5 ECB 25-1 7 8 0 CHKD 2 3 5 7 8 0

Dames & Moore 19943-002 Ford Earth City LOCATION OF BORING DRILLING METHOD:
374" Hollow Stem Augors Water MW-103 pitch 102 Centinuous sancter START TIME WATER LEVEL TIME 04/09 04/09 DATE [380N/SW] MW-10 BEVATION CASING DEPTH SURFACE CONDITIONS: SOIL 0 C5/60 ist a ray, med stiff to stiff, fine 5M Steel Pro SandiWB-35 Well: 2"Dic PVC Screen: #10 Slot Size 0 E08-18' Frontopol PVC)

37


vames & moore JOB NO. LOCATION 19943.002 FORD Eatl Cit Mo BORING NO. DRILLING METHOD: MW-105 " ID Hollas Ston Auge-MW105 # TROP SHEET Mounted SAMPLING METHOD: or / Continuous Scapler DRILLING START FINISH TIME WATER LEVEL 8:50 9.75 DATE DATE DATE 4-12-90 CASING DEPTH ELEVATION SURFACE CONDITIONS DEPTH IN FEET Ę **()0** organ:c 5:16 9 modium brown 7/5/10 60/1 ک CS fine Goals sand / 0 10-15 3 recon, EUB 15' 7 0

Defined on State of S		LOCAT	TON OF	BORING	,					JOB NO. CLIENT LOCATION
DRILLIAN METHOD 3 TV 7 D Hollow Ston Asses SMET SMETT SAMPLINE ATV Maintai Shellow acressed Sample 150' The Control of the Control ONTH MATERIAN STANT IN THE THE THE THE THE THE THE THE THE THE									تسر	IN 19943-002 FORD Earth City MO
MINITED BY STATE AND STATE							- 1			DRILLING METHOD:
MW-10C Shellow accessed with 150' The Continuous Simple Dominion 1 450' Hilly Common Date 1 Control of the C	`						ļ			33/4 " I.D Hallow Stem Auger MW-106
MW-10C Shilling accessing a standed 150' The p country of the p country										ATIV Manley
Shelling activate of the production of the produ			M	N-10	C		-			
Shelling activate of the production of the produ			711-	ox			1.	_		
THE CONTROL OF THE CONTROL OF THE CASE OF		sh-/				heade	, }	1		
CATUM CHANGE CONSTITUTE CASING COPTE 12-52 STATE STREET CONSTITUTE CASING COPTE 12-52 STATE CONSTITUTE CASING COPTE 12-52 SUBJECT COPTE 12-52 SUBJECT	Ш							150		TIME 10.715
DATUM CLIMATION CLIMATION SUBJECT ORDITIONS SUBJECT CORDITIONS SUBJECT CORDITIONS Wooded It brush cover, (a cases o decertis, matter CS 607 10-5 10 10 10 10 10 10 10 10 10 1	-11		_	1 4	150'		Thu)	P Cora	<i>ب</i>	
CS 697 10-5 00 dark Grown Silty Cley where silt was for silty Cley where s		DATUR	4				_	ELEVATI	ON	
CS 60/3 10-5 1	Ш	œ		ဂ် ပ္		/FT. ER	70 S	1 = 5	I	,
CS 697 10-5 00 dark brown silty seed in Methan brown fine silt we can't spots 1		JAP!	2 2 3 E	EPTH	7 4 5	OWS	MBE	ZEPT	SOIL	wooded It brush cover, loaves a
Medium Idack brown fin silt start with the silt and moist of the silt of the s		Ŋ	عَ عَالَمُ الْحَالَةِ عَلَى الْحَالَةِ عَلَى الْحَالَةِ عَلَى الْحَالَةِ عَلَى الْحَالَةِ عَلَى الْحَالَةِ عَل	ā°	30	BL S	ž	"=		decigity Matter
Medium Idack brown fin silt start with the silt and moist of the silt of the s	H	<u>_</u>	60/		1/	_		00	_	dack Grown clay/silt w/ organis Metter
Stiff dark bown for silty send A Medium bown silty send A Medium bown silty send A Washing bown sil	. []	دب	197		0-	5		1 -	4	medium Grown time silt in rust spots
Stiff dark 6 mm silty send A Medium 6 mm silty Send Medium 6 mm silty send A Wedium 6 mm silt	-			1				ןי	1	
Stiff dark 6 mm silty send A Medium 6 mm silty Send Medium 6 mm silty send A Wedium 6 mm silt				i				1,[1 <i>-</i>	medium/dark brown fine silt
Medium Grown Silty Sead CS 695 2510 05 A Medium Grown Silty Sead A Wedium							^] ·	<u> </u>	
Medium Grown Silty Sound CS 6045 2 500 6 7 8 9 Fine Silty Sand, tight and Moist Usry hight gray Silty clay beaun/gray Sandy silt wil rust Fine Sand elk gray fine elay 15 Fine Sand elk gray fine elay	i	:						3 -	┨.	Stiff dark bown silty (clay w/ rust
CS 69/5 25/0 05 6 7 8 9 Fine silty seed, tight and Moist Using hight grey silty clay beswedgery sandy silt wil rust Fine seed alk Sieg Fine eley 15 77 8 8 9 10 11 12 15 17 18 19 10 10 10 11 11 12 13 15 17 16 17 18 18 19 10 10 11 11 12 13 14 15 17 16 17 18 18 19 10 10 11 11 12 13 14 15 16 17 18 18 19 19 10 10 10 10 10 10 10 10									1	
dk Grown silty clay worst CS 60 3 10 10 CS 60 48 10 CS 60 3 10 10 CS 60 48 10 CS 60 48 10 10 CS 60 48 10 10 CS 60 48 10 10 CS 60 48 10 10 CS 60 48 10 10 CS 60 48 10								┤╶├	-	<u> </u>
Sold Sold Sold Sold Sold Sold Sold Sold	Ì	25	45		15	0		05	1	dk Grown silty clay w/ rust
S 60 8 3 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10							- i	6	-	
S 60 8 3 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	ł							┨ ┃ ┃	1	
S 60 48 3 10 15 1 Uery Hight gray silty and moist Denum facey sandy silt wil rust Fine sand alk sray fine clay 15 mm 6 EOB 15' 7								']	
S 60/8 3/10/25 10 1 Dery Fight gray silty clay Drown/gray sandy silt will rust Fine sand alk sray fine clay 15 17 18 19 10 10 10 11 11 12 15 17 15 17 16 17 17 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10								8	1	
S 60/8 3 10-25 10 11 12 12 13 15 15 16 17 18 18 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10 11 10 10 11 10 10 11 10	٠.								7	
Dery Fight Gray Silty clay brown/gray Sandy silt wil rust fine Sand alk stay fine alay 15 15 15 15 15 15 15 15 15 1									-	fine silty sand, tight and moist
Dery Fight Gray Silty clay brown/gray Sandy silt wil rust fine Sand alk stay fine alay 15 15 15 15 15 15 15 15 15 1	.	<u> </u>	60/48			15		10	1	
brown/gray sandy silt wil rust fine sand alk stay fine clay 15 7 8 9],[]	very hight gray silty clay
brown/gray sandy silt wort fine sand alk stay fine clay 15 7 8 9	BY							} }	1	
15 ma 6 FOB 15' 7	Q. XH							2]	brown/gray sandy silt we vost
15 mm 6 EOB 15' 7	2/2							3	-	fine 560d
15 mm 6 FOB 15' 8 9								4]	
6 FOB 15' 7 8 9	1	<u> </u>						,	1	
7 7 8 9					/			, ' 	1	
8 9	40							6	15'	
	•							7	-	
	1.80)							8	1	
	-				K-	 		┤	-{	
	, ie							9	_	
	628 1 13							0	7	
, 3	. 2	L	<u> </u>	L	<u> </u>	1	L	<u></u>	 _	

ုးသ

APPENDIX E
Well Construction Diagrams

HONITOR WELL INFORMATION SHEET						
GROUND SURFACE ELEVATION		JOB MUMBER	19943-002			
TOP OF WELL CASING ELEVATION	447.66	BORING NUMBER	MW-101			
•		DATE	4-11-90			
		LOCATION .	EarTh City d			

MONITOR WELL INFORMATION SHEET

GROUND SURFACE ELEVATION	DB HUHBER 19943-000
TOP OF WELL CASING ELEVATION	448. 98 BORING HUMBER MW - 102
	DATE 4-11-90
	LOCATION . Earth City Mo
	Carry Crea //10
96 11	DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 24.5 FEET. *
	PIPE A4.5 FEET.*
	DEPTH TO BOTTOM OF SEAL (IF INSTALLED)
METERIA COOL COOL	OEPTH TO BOTTON OF SEAL (IF INSTALLED) FEET. * Bentonito Pellets
	DEPTH TO TOP OF SEAL (IF INSTALLED) 1.5 FEET.*
	LENGTH OF WELL SCREEN /O FEET. SLOT SIZE U20/0
	•
	TOTAL LENGTH OF PIPE 16.8 FEET AT 2 INCH DIAMETER.
人 国 国 区(1)	
(5)	TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE SAND
) PIR_SHIOD
	(7) CONCRETE CAP. YES HO (CIRCLE 0:16)
	HEIGHT OF WELL CASING ABOVE GROUND
	PROTECTIVE CASING? YES HO (CIRCLE ONE) S HEIGHT ABOVE GROUND FEET.
	LOCKING CAP? YES NO (CIRCLE ONE)
1 2 2 2	10 TYPE OF UPPER BACKFILL COMPAT SING
	(11) BOREHOLE DIAMETER 8 INCHES.
	DEPTH TO GROUND WATER 20 FEET. *
	26
	(1) TOTAL DEPTH OF BOREHOLE 25 FEET.*
) THE OF LOVER BACKFILL natural sand & s; It
	15) PIPE MATERIAL PUC.
(14	16 SCREEN MATERIAL PUC.
	*(DEPTH FROM GROUND SURFACE)
和 於學術學	Committee Committee
MYZMZM	-

MONITOR WELL INFORMATION SHEET

GROUND SURFACE ELEVATION		JOS NUMBER	19943-002
TOP OF WELL CASING ELEVATION	441.16	BORING NUMBER	MW-103
		DATE	04/09/90
		LOCATION .	Earth City, MU
	DEPTH TO	BOTTON OF WELL	. POINT OR SCOTTED
	' PIPE	15.7 FEET.	. POINT OR SLOTTED

6

(16)

[13]

11

- 1 DEPTY TO BOTTOM OF SEAL (IF INSTALLED) Sentomits
 1.5 FEET. *
- DEPTH TO TOP OF SEAL (IF INSTALLED)

 2.5 FEET.*
- SLOT SIZE 0.0/0
- TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE Jana.
- () CONCRETE CAP. (CIRCLE OHE)
- HEIGHT OF WELL CASING ABOVE GROUND 2.7 FEET.
- PROTECTIVE CASING? (5) HEIGHT ABOVE GROUND_ LOCKING CAPT (CIRCLE ONE)
- 10 TYPE OF UPPER BACKFILL coment slorry
- (1) BOREHOLE DIAMETER_ ____TNCHES.
- (13) TOTAL DEPTH OF BOREHOLE __/ 8 ___FEET.*
- 14) TYPE OF LOVER BACKFILL Natural Sand + 5 it
- (15) PIPE MATERIAL PVC
- (16) SCREEN MATERIAL PVC

* (DEPTH FROM GROUND SURFACE)

110	WITOK MELL	INFORMATIC	N SHEET	
GROUND SURFACE ELEVATION			JOB NUMBER	19943-002
TOP OF WELL CASING ELEVATIO	н <u>441.8</u>	8	BORING NUMBER	MW-104
			DATE	4-11-90
			LOCATION .	Earth City Mo
	1	1 DEPTH TO	BOTTON OF WELL	POINT OR SLOTTED
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TESTER A	(2) DEPTH TO	BOTTOM OF SEAL	(IF INSTALLED) Bentanite Pellets
		(1) DEPTH TO	TOP OF SEAL (1	F INSTALLED)
		LENGTH O SLOT SIZ	F VELL SCREEN_ E_O-OIO	/O_FEET.
	2)	(3) TOTAL LE	HCH DIAMETER.	9-9 FEET AT
(5)	(10)	TYPE OF PIPE	PACK AROUND WELL	L POINT OR SLOTTED
	\cup	1 CONCRETE	w. TES	HO (CIRCLE OHE)
	15	HEIGHT O	F VELL CASING A	BOVE GROUND
	3	PROTECTI HEIGHT A LOCKING		ES NO (CIRCLE ONE) ED NO (CIRCLE ONE)
		10 TYPE OF	UPPER BACKFILL_	coment.
		11 BOREHOLE	DIAMETER	8 INCHES.
	6	12 DEPTH TO	GROUND WATER	
	16	(1) TOTAL DE	PTH OF BOREHOLE	
	1		LOWER BACKFILL_	
	-		TERIAL PUC	
	14)	(16) SCREEN P	MTERIAL PV	<u>C</u> .
		* (DEPTH FRO	M GROUND SURFAC	:E)

MONITOR WELL INFORMATION SHEET 19943-002 GROUND SURFACE ELEVATION JOS NUMBER TOP OF WELL CASING ELEVATION 440.17 BORING NUMBER MW-105 4-12-90 DATE East City MO LOCATION DEPTH TO BOTTOM OF WELL POINT OR SLOTTED 15 ___ FEET. * PIPE DEPTH TO BOTTOM OF SEAL (IF INSTALLED) 3.5 FEET. * BENTON to Pellet, DEPTH TO TOP OF SEAL (IF INSTALLED) LENGTH OF WELL SCREEN (O SLOT SIZE 0-010 $\langle 11 \rangle$ <u></u> [12] TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE SAND (1) CONCRETE CAP. YES (CIRCLE O:IE) [15] HEIGHT OF WELL CASING ABOVE GROUND PROTECTIVE CASING? (YES) Ю (CIRCLE ONE) HEIGHT ABOVE GROUND FEET. LOCKING CAPT (CIRCLE ONE) NO (10) TYPE OF UPPER BACKFILL COMENT. 2 (II) BOREHOLE DIAMETER_____ _THCHES. 6 (12) DEPTH TO GROUND WATER 3 /2 (13) TOTAL DEPTH OF BOREHOLE /5 16 (14) TYPE OF LOVER BACKFILL PIPE MATERIAL (16) SCREEN HATERIAL 14 * (DEPTH FROM GROUND SURFACE) 13

MONITOR WELL INFORMATION SHEET GROUND SURFACE ELEVATION 19943-002 ABBRUN BOL TOP OF WELL CASING ELEVATION 444.70 BORING NUMBER MW-106 4-12-90 DATE LOCATION DEPTH TO BOTTOM OF WELL POINT OR SLOTTED 7 PIPE_____IS____FEET.* DEPTH TO BOTTOM OF SEAL (IF INSTALLED) 3.5 FEET. * Bentenile Pellets DEPTH TO TOP OF SEAL (IF INSTALLED) <u>∂____</u>೯೯,∗ LENGTH OF WELL SCREEN 6 FEET. SLOT SIZE O. O. IO ીા <u>V</u>(12) 5 TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE SAND. T CONCRETE CAP. (YES) (CIRCLE ONE) HEIGHT OF WELL CASING ABOVE GROUND __FEET. PROTECTIVE CASING? YES (CIRCLE ONE) हिंदा. (1) HEIGHT ABOVE GROUND LOCKING CAPT (CIRCLE ONE) (10) TYPE OF UPPER BACKFILL C'EMENT. 2 (1) BOREHOLE DIAMETER 8 INCHES. [6] (12) DEPTH TO GROUND WATER 9 16 (13) TOTAL BEPTH OF BOREHOLE / 5 (14) TYPE OF LOVER BACKFILL (IS) PIPE MATERIAL_ (16) SCREEN HATERIAL [14]

MONITOR WELL INSTALLATION DETAILS

* (DEPTH FROM GROUND SURFACE)

13

MONITOR WELL INFORMATION SHEET 19943-002 GROUND SURFACE ELEVATION JOS NUMBER TOP OF WELL CASING ELEVATION 449-25 BORING NUMBER _MW-107 4-12-90 DATE LOCATION 7 DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 15 FEET. * OEPTH TO BOTTOM OF SEAL (IF INSTALLED) FOSTERIA DE 3.5 FEET.* DEPTH TO TOP OF SEAL (IF INSTALLED) <u>2</u> _ FEET.∗ LENGTH OF WELL SCREEN____/O___ SLOT SIZE O OLO (.11)TOTAL LENGTH OF PIPE_ 2 INCH DIAMETER. 5 TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE SAND 7) CONCRETE CV. YES HO (CIRCLE ONE) 15 (1) HEIGHT OF WELL CASING ABOVE GROUND ___FEET. MO (CIRCLE ONE) PROTECTIVE CASING? YES (1) HEIGHT ABOVE GROUND LOCKING CUPT ю (CIRCLE ONE) (10) TYPE OF UPPER BACKFILL COMON! (1) BOREHOLE DIAMETER 8 INCHES. 6 (12) DEPTH TO GROUND WATER _____ 16 (13) TOTAL DEPTH OF BOREHOLE 15

MONITOR WELL INSTALLATION DETAILS

(14) TYPE OF LOWER BACKFILL N

* (DEPTH FROM GROUND SURFACE)

PIPE HATERIAL

(16) SCREEN HATERIAL

[14]

[13]

APPENDIX F
Groundwater Field Measurements

Field Personnel	Job N	10. <u>1994</u>	3-002
D. Puriton J. Peck	Locat	ion Earth	City Mo
J. Peck	Well	No. <u>Μω</u>	. 101
	Date	April 1	6, 1990
Total Well Depth (from top of casing)		27.3	feet
Depth to Water Surface (from top of cas	ing)	18.58	feet
Height of Water Column		872	feet
Volume of Water Column (height x 0.163)		104	gallons

Well Volumes Purged	Specific Conductance	Temperature	рН
Units	Mi creinhos	oF	standard units
1	1067	63.9	7.04
2	712	62.3	7-06
3	711	61.8	7. 05
4	714	62.0	7.07
5			
6			
7			·
8			

Field	l Personnel
0	Punton
M.	Swenson

Job No. 19943-002

Location Earl Cit, Mo

Well No. Mw - 102

Date April 17, 1990

Total Well Depth (from top of casing) 26.8 feet

Depth to Water Surface (from top of casing) 20.17 feet

Height of Water Column (height x 0.163) 6.63 feet

Volume of Water Column (height x 0.163) 6.63 gallons

Well Volumes Purged	Specific Conductance	Temperature	Нф
Units	Micromhos	o F	standard units
1	956	54.9	7.20
2	942	53-3	7-27
3	959	51.2	7-26
4	956	52.1	7.25
5	965	52.7	7.20
6			
7			·
8			

Field Personnel Job	No. 19943-002
D PURINGTON LOC	ation East City Mo
M. Swanson Wel	1 No. Mw - 103
Dat	e Apr.1 17, 1990
Total Well Depth (from top of casing) Depth to Water Surface (from top of casing)	18-4 feet 11.97 feet
Height of Water Column	<u>648</u> feet
Volume of Water Column (height x 0.163)	/ 06 gallons

Well Volumes Purged	Specific Conductance	Temperature	рн
Units	Micromhos	0 F-	standard units
1	695	60.0	7.00
2	677	58.4	7.05
3	677	59.2	7.00
4			
5			
6			
7			
8			

Field Personnel Jo	b No. 19943-007
D. Purinton	cation Eat City Mo
	11 No. MW - 104
	te Apr. 1 17, 1990
Total Well Depth (from top of casing) Depth to Water Surface (from top of casing	$\frac{19.9}{12.27}$ feet
Height of Water Column	7.63 feet
Volume of Water Column (height x 0.163)	1.24 gallons

Well Volumes Purged	Specific Conductance	Temperature	рН
Units	Micronhis	°F	standard units
1	1245	606	6.89
2	1207	587	7.00
3	1203	56.3	7.03
4	1205	57.1	7.06
5	1222	57.0	6.95
6			·
7			
8	·		

Job No. 19943-002 Field Personnel Location (The City Mo Well No. MW - 105 Date Apr. 1 16, 1990 Total Well Depth (from top of casing) Depth to Water Surface (from top of casing) 7.05 feet Height of Water Column 115 gallons

Volume of Water Column (height x 0.163)

Well Volumes Purged	Specific Conductance	Temperature	рН
Units	Micronhois	0F	standard units
1	885	56.7	6.74
2	1397	56-0	6.76
3	1304	56.5	6.83
4	1276	56.4	6.78
5	1207	55.7	6.82
6	1212	56-0	6.84
7	1228	55-7	6.80
8			

Field Personnel Job	No. <u>19943-002</u>
D. Purinten J. Pock Well	tion Easth City Mo
J. Pock Well	No. MW. 106
Date	April 16, 1990
Total Well Depth (from top of casing) Depth to Water Surface (from top of casing)	17.3 feet 9.58 feet
Height of Water Column	7. 72 feet
Volume of Water Column (height x 0.163)	1.25 gallons

Well Volumes Purged	Specific Conductance	Temperature	Нф
Units	Micronhos	oF	standard units
1	1153	52.4	6.67
2	1186	52.1	6.60
3	1222	52.2	6.60
4	1237	52.2	6.62
5	1225	52.2	6.61
6			
7			
8			

Field Personnel	Job No. <u>19943-007</u>
D. Puriton J. Peck	Location End C.L. Mo
J. Pect	Well No. $M\omega$ -/07
	Date Apr. 1 16, 1990
Total Well Depth (from top of casing)	<u> 17-3</u> feet
Depth to Water Surface (from top of cas	ing) 5.22 feet
Height of Water Column	<u> 12-08</u> feet
Volume of Water Column (height x 0.163)	/. 97 gallons

Well Volumes Purged	Specific Conductance	Temperature	Нф
Units	Micromhos	°F	standard units
1	1006	53.3	7.14
2	989	51.3	7-0
3	987	50.9	6.96
4	975	50.8	6.93
5			
6			
7			
8			

MEMORANDUM

Date:

October 2, 1980

To:

Bob Schreiber

From:

Burt McCullough

Subject:

Westlake Landfill

Mufing nu With lake **ટ**: 00 ે

1980

SCLID WASTE

Westlake Landfill, located in Bridgeton Missouri (St. Louis County) has been the subject of recent inquiry. This landfill began operation prior to state As far as our records show, this landfill first opened in the mid-1960's. Part of the landfill lies in an old quarry and part of the landfill lies in the Missouri River floodplain, approximately 14 miles from the river. Witnesses to this operation, when the area of the landfill which lies in the floodplain was in operation, note that the fill area was often actually beneath the level of the water table. According to file materials from Missouri Geological Survey, it is "highly probable that leachate from the landfill is entering the waters of the Missouri River. . . " Leachate from the old quarry area of the landfill is collected and hauled to MSD treatment plants. Construction of onsite treatment facilities is underway. About 48,000 gallons of leachate per day is currently being collected.

Aside from normal landfill materials, there are chemical industrial wastes and radiologically contaminated materials deposited in this landfill. The chemical wastes, that we know of, include about 4,000 tons of residues from the production of insecticides and herbicides. These pesticide wastes were deposited by Chevron Chemical Company. Also included in the chemical wastes are waste materials from ink manufacture and from the manufacture of glue. Among the chemical wastes that we know of in Westlake Landfill are:

waste ink esters

pigments alcohols oily sludges insecticides

halogenated intermediates

aromatics

oils

wastewater sludges

heavy metals

asbestos

herbidices

Besides chemical hazardous wastes, in Westlake Landfill, there are radioactive wastes. During early 1973 Cotter Corporation buried radioactive Barium Sulfate Slag material and radiologically contaminated building rubbis. There are approximately 9,000 tons of this material which contain about 7,400 tons of natural Uranium. In October, 1977, an aerial radiological survey was done to determine the location of the burial of this contaminated material. The report from this survey indicates that there are two burial sites. One is in the center of the old quarry area, and the other is on the edge of the floodplain area which borders adjacent farmland. The U.S Nuclear Regulatory Commission has contracted Radiation Management Corporation to do extensive on-site radiological surveys which include groundwater analysis, core sampling, test boring, and other tests as deemed necessary. The NRC has given DNR verbal

loseph P. Teasdale Governor Fred A Lasser Director

Division of Environmental Quality Robert J. Schreiber Jr., P.E. Director

Exhibit 20-13

RESOURCES

MISSOURI DEPARTMENT OF NATURAL P.O. Box 1368 2010 Missouri Blvd. Jefferson City, Missouri

Westlake Landfill continued Page 2 October 2, 1980 To: Bob Schreiber

permission to utilize the monitoring wells which Radiation Management Corporation will be digging, in order that DNR may test for the presence of chemical hazardous wastes.

There is little known about what went into Westlake Landfill prior to State regulation. Analysis needs to be done to determine: 1) what wastes are deposited in Westlake Landfill, 2) if any of these pollutants are leaving the landfill via groundwater, and 3) what threat does Westlake Landfill pose to drinking water supplies.

cc: Fred Lafser
Ron Kucera
Jim Long
Robert Robinson
Bob Miller
Tom Doan

3.600 St. Louis County West Lake Demolition Landfill

October 31, 1977

riconaly

RECEIVEL

NOV 2 1977

BULEAU OF WASTE MANAGEMENT

Mr. William Canney
West Lake Landfill, Inc.
Rt. 1, Box 206
Bridgeton, MO 63044

Dear Mr. Cenney:

This is to follow up on the inspection of the West Lake Demolition Landfill on October 4, 1977, by a representative of the Missouri Department of Matural Resources. As a result of this inspection, the following upsatisfactory features are noted and recommendations for their correction are given.

UNSATISFACTORY FEATURES:

- 1. Mon-demolition landfill waste including wastes not even acceptable at sanitary landfills were being deposited at the demolition landfill site.
- 2. Routine techniques of spreading and compacting the demolitions wastes were not being practiced.

COMMENTS AND RECOMMENDATIONS:

1. A considerable amount of paint sludge in 55 gallon metal drums had been disposed of on the site. It appeared that the majority of the paint sludge had been mixed with soil and had caused one area to be very odorous and extremely damp. Neither the demolition or sanitary landfill should be accepting any quantity of paint or other sludges. It is understood that a small amount might get into the landfill undetected but, it was obvious that a good portion of the sludge could and should have been turned away. Immediate steps must be taken to stop all incoming deposits of such materials and to immediately remove such materials when they some how are dumped. (Section 89-4.919 (2) (A) of the Missouri Solid Waste Rules and Regulations lists the types of materials to be accepted at a demolition landfill. Enclosed is one copy of the Rules and Regulations.

3.600 St. Louis County
West Lake Demolition Landfill

October 28, 1977

- 2. Acceptance of non-denotion wastes has been observed in the past at the demolition landfill site. It is felt that it is a combination of an inadequate sign listing the wastes to be accepted, inadequate inspection of loads coming in and a willingness to accept such non-demolition materials when they are on site. fection 10-4.010 (2) (C) 2 requires that a list of wastes to be accepted to displayed prominently at old mite entrances. No sign was observed at either entrance for the demolition landfill. A sign lighting the waste to be accepted must be exected at all entrances to the demolition landfill. A responsible supervisor should be located on site who is willing to thoroughly inspect every load that comes in and to reject all non-demolition materials. Anyone caught dumping non-demolition wastes should be forced to remove such wastes to a proper disposal facility. The combination of advising prospective dumpers of what wastes are accepted via the landfill sign along with a responsible supervisor who is knowledgable about what wastes can and cannot be accepted should result in a great reduction in non-demolition wastes being dumped at the demolition lanJfill.
- 3. It was observed that the demolition materials were being dumped at the top of the working face of the landfill and for the most part simply pushed over the edge of the face. Very little compaction was being accomplished. It was understood that some bulky wastes such as large concrete blocks and tree trunks cannot be compacted but, the majority of the other demolition wastes can be spread and compacted in layers around two feet thick on or near a 3 to 1 slope. If possible, it is recommended that the devolition wastes be dumped at the base of working face. Whether the wastes are dumped at the top or base of the working face, every effort must be made to spread and compact the demolition wastes in layers not to exceed two (2) feet as much as practical from the standpoint of the size and shape of the materials. If a load is observed containing large materials that could hinder the proper commaction of other demolition wastes. it should be dimped where it can be more easily handled instead of with the other wastes. Section 80-4.010 (12) (C) I requires that solid waste handling equipment shall be capable of :
 - 1. Spreading and compacting the solid wastes accepted in layers no more than two feet thick, when practical from size and shape of the waste material, while confining it to the smallest practical area.
 - 2. Compact the solid waste to the smallest practical volume.
 - 3. Place, spread and compact the cover material as much as practical.
- 4. An extensive salvage operation was being run at the demolition

3.600 St. Louis County West Lake Demolition Landfill Page Three

Date - October 31, 1977

CEPTAL CONTRACTORS

I landfill mainly for the collection of metallic objects. It was understood that the salvaged materials are hopefully removed from the site the same day they are collected. The 1 landfill rust be commended for the extensive salvage operation but, every effort must be made to remove the salvaged a material daily or to keep them neatly stored on site.

cover material had been applied and had been properly compacted any areas that have been brought up to final grade should contain final cover consisting of at least two feet of compacted A. soil and be properly seeded.

If you have any questions concerning the above comments and recommendations, please feel free to give us a call at our St. Louis Office. Reinspections will be made to insure that any non-demolition materials are not being accepted and the materials accepted are being properly compacted. ration (in the second

APPROVE - SUBMITTED BY: M. Ober Types : Earl F. Holtgraewe, P.E. Bud Stein Regional Administrator Environmental Engineer I
St. Louis Regional Office St. Louis Regional Office
Department of Natural Resource Department of Natural Resources Gemoiner - Regional Administrator Fresh et la ca EFH/BS/15 ---- -- CC: Earl Breadon 2337 Telegraph Road St. Louis, MO St. Louis County Health Department _____ CO,SW

ha Herry to be a figurable

So the state of the companies of the state o

The Estimated States of the States of the Control of the States of the S

MISSOURI DEPARTMENT OF NATURAL RESOURCES DIVISION OF ENVIRONMENTAL QUALITY

DEMOLITION LANDFILL SURVEILLANCE RECORD

Date: 10-4-77	•	s/Week Open:		6	
Name of Demolition Landfill: West Lake					
Permit No: 218703	Cou	nty:	5 f.	Couis	County
Owner: West Lake Inc.	•		ame	as ou	ner
Address: Koute 1, 130x 206 Bridgeton, Mo 630	_ Add	ress:			
Special Conditions and Approved Modification	s			•	
A. Are there any special conditions or approved the rules and regulations? (e.g. impermeabl quirements)	e barrie		avation,		
B. Is the demolition landfill operation in compl (If "No," describe violations under "REMAR"	RKS.")	th the special		ons or approve	d modifications?
II. Check Types of Waste Accepted		INDICATED		REPORTED BY OPERATOR	AS OBSERVED
Demolition and construction waste		1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		O ZNATON	
Brush and untreated wood waste					
Tires					×
Inert Plastics	• • • • • • • • • • • • • • • • • • • •				1
print sluce cardband a	ristes				×
	·				
					<u> </u>
III. Remaining Life of Landfill					
A. Estimated average volume of compacted so		e received. s, yards/day, s	week)	unker	roun
B. Estimated volume of remaining landfill cover	red by a	oproved engine acre feet	eering p	ilans.	

IV. Satisfactory Compliance Subsections Regulations 80-4.010
Check all sul ::tions: SAT — Satisfactory; UNS — Unsatisfactory. (If necessa escribe "UNS" violations under "Remarks.")

ON R	SATISFACTORY COMPLIANCE OPERATING PROCEDURE		UNS
D WA	ISTE ACCEPTED	•	
	Routine sanitary landfill techniques of spreading and compacting solid waste shall be used as much as practicable to dispose of solid waste in a demolition landfill.		X
	A list of wastes to be accepted shall be displayed prominently at the site entrance.		X
D WA	ASTE EXCLUDED		
	A responsible supervisor shall be present at the disposal area at all times when the area is open to receive waste.	X	
	Excluded wastes deposited removed to an approved disposal site.		Ž
ZETTE	CTION		
	Site accessible by all-weather roads.	X	
R Q	UALITY		
	Surface water courses and runoff satisfactorily diverted from the landfill. Demolition landfill construction and grading to promote rapid surface water runoff without excessive erosion.	X	
	Decomposable solid wastes deposited above predicted maximum water table.	X	
UAL	ITY		
٦	No open burning without written permission from the agency having jurisdiction.	X	
CONT	ROL		
\Box	Decomposition gases adequately vented to prevent danger to occu- pants of adjacent property.	X	
\neg	Gases vented to prohibit explosive or toxic accumulations.	M	
RS			
Vector control programs implemented when necessary.		V	
HETIC	33		
\neg	Litter collected and compacted into cell be utilized daily.	V	
\neg	Wastes easily moved by wind covered as necessary.		
7	On-site vegetation and natural windbreaks being utilized for litter control and aesthetic appearance.	7	
	SELLI R QUE IRS	ROPERATING PROCEDURE D WASTE ACCEPTED Routine sanitary landfill techniques of spreading and compacting solid waste shall be used as much as practicable to dispose of solid waste in a demolition landfill. A list of wastes to be accepted shall be displayed prominently at the site entrance. D WASTE EXCLUDED A responsible supervisor shall be present at the disposal area at all times when the area is open to receive waste. Excluded wastes deposited removed to an approved disposal site. SELECTION Site accessible by all-weather roads. R QUALITY Surface water courses and runoff satisfactorily diverted from the fandfill. Demolition landfill construction and grading to promote rapid surface water runoff without excessive erosion. Decomposable solid wastes deposited above predicted maximum water table. UALITY No open burning without written permission from the agency having jurisdiction. CONTROL Decomposition gases adequately vented to prevent danger to occupants of adjacent property. Gases vented to prohibit explosive or toxic accumulations. IRS Vector control programs implemented when necessary. HETICS Litter collected and compacted into cell be utilized daily. Wastes easily moved by wind covered as necessary. On-site vegetation and natural windbreaks being utilized for litter	R OPERATING PROCEDURE SAT D WASTE ACCEPTED Routine sanitary landful techniques of spreading and compacting solid waste shall be used as much as practicable to dispose of solid waste in a demolition landfull. A list of wastes to be accepted shall be displayed prominently at the site entrance. D WASTE EXCLUDED A responsible supervisor shall be present at the disposal area at all times when the area is open to receive waste. Excluded wastes deposited removed to an approved disposal site. SELECTION Site accessible by all-weather roads. R QUALITY Surface water courses and runoff satisfactorily diverted from the landfull. Demolition landfull construction and grading to promote rapid surface water runoff without excessive erosion. Decomposable solid wastes deposited above predicted maximum water table. UALITY No open burning without written permission from the agency having jurisdiction. CONTROL Decomposition gases adequately vented to prevent danger to occupants of adjacent property. Gases vented to prohibit explosive or toxic accumulations. IRS Vector control programs implemented when necessary. ETICS Litter collected and compacted into cell be utilized daily. Wastes easily moved by wind covered as necessary. On-site vegetation and natural windbreaks being utilized for litter

SUBSECTION NUMBER	SATISFACTORY COMPLIANCE OPERATING PROCEDURE	SAT	UNS
(10) AESTHETI	CS (continued)		
(10)(C)4	Salvaged materials removed daily or stored of aesthetically acceptable manner.	X	
(11) COVER M			
(11)(C)1	Twelve (12) inches compacted soil cover material applied at least once every seven calendar days.	X	
(11)(C)2	Final cover of at least two (2) feet compacted soil applied on all completed areas.	X	
(12) COMPACT	ION		
(12)(C)1A	Solid waste spread in layers not to exceed two (2) feet as much as practical.		\nearrow
(12)(C)1B	Solid waste compacted to smallest practical volume.		X
(12)(C)IC	Cover material compacted as much as practical.	X	
(12)(C)2	Equipment available and operated to spread and compact the solid waste as received or at least when the accumulated waste reaches 200 cubic yards.		X
(12)(C)3	No solid waste disposed of in water where the water interfered with spreading and compacting or where the water is causing a mos- quito problem.	×	
(13) SAFETY			
(13)(C)1	Fire extinguishers provided on all equipment.		
(13)(C)2	Provisions for extinguishing fires in waste, equipment or structures.		
(13)(C)3	Scavenging prohibited.	X	
(13)(C)4	Controlled access limited to operating hours.	X	
(13)(C)5	Traffic control signs provided.	X	
(13)(C)6 .	Dust control adequate.	X	
(14) RECORDS			
(14)(C)1A	Records of complaints and major problems.		
(14)(C)1B	Records of dates of cover material application.		_
(14)(C)1C	Records of vector control efforts.		_
(14)(C)1D	Records of dust and litter control efforts.		
(14)(C)1E	Records of quantity of waste received.		_
(14)(C)2	Records of location of general types of wastes and depth of fill.		_

SIGNATURE OF INVESTIGATOR

V. Operation Proceeding in Accordance With Approved Engineer Plans? (If "No," describe violations under "Remarks.")

Yes

No

REMARKS

Print Slicious Users suspend in recently of Sixulations

Unadfillia dunipung at top pushing over edge cliff

Matter that their fore compaction; they need cliff

matter that control of materials comming in efficiency

Alvage operation; apparently salvaged materials hardidately.

[Attach additional sheets as necessary.)

Print Scin

	PARAMETER	CONCENTRATION
1.	pH (Std. Units)	6.0
2.	Specific Conductance (µmhos/cm)	3170
3.	Alkalinity as CaCO ₃ (mg/l)	475
4.	Acidity as CaCO ₃ (mg/l)	415
5.	Total Solids (mg/l)	4030
6.	Suspended Solids (mg/l)	392
7.	Volatile Suspended Solids (mg/l)	223
8.	Grease (mg/l)	56
9.	Chemical Oxygen Demand (mg/l)	38 20
10.	Total Organic Carbon (mg/1)	1090
11.	Phenol (mg/l)	1.02
12.	Fluoride (mg/l)	0.5
13.	Chloride (mg/l)	330
14.	Cyanide (mg/l)	. <0.1
15.	Kjeldahl Nitrogen as N (mg/l)	83.2
16.	Sulfate (mg/l)	580
17.	Sulfide (mg/l)	<0.1
18.	Surfactant (MBAS) (mg/l)	0.5
19.	Chromium (mg/l)	<0.5
20.	Copper (mg/l)	1.60
21.	Iron (mg/l)	31.0
22.	Lead (mg/l)	<0.5
23.	Nickel (mg/l)	<0.3
24.	Zinc (mg/l)	10.8

Confirmed Abandoned or Uncontrolled Hazardous Waste Disposal Sites in Missouri

January 1, 1987

Annual Report

MISSOURI DEPARTMENT OF NATURAL RESOURCES Division of Environmental Quality

WESTLAKE LANDFILL

Classification: Class II, Priority 2

Site Name: Westlake Landfill

Address: Bridgeton, MO 63042. Between Old Rock Hill Road and New

Rock Hill Road east of Earth City T 46 N, R 5 E, St. Charles Quadrangle

Waste Type: Organics, inorganics, solvents, pesticides, heavy metals,

acids, bases, plating wastes and radionuclides

Quantity: Unknown

Site Description:

The site is an active landfill on the Missouri River floodplain in St. Louis County. The site has been reduced to two areas (see attached legal description).

Present Owner: William McCullough, President, Westlake Landfill, Inc.,

Bridgeton, MO 63042

Environmental Problems Related to Site:

The site is an active permitted landfill which in the past accepted unknown quantities of hazardous wastes. Excavation at the site in the past reached the same depth as the groundwater. Unknown quantities of hazardous materials have been deposited in direct contact with groundwater. There is potential for contamination of groundwater and the Missouri River which is less than one mile away, directly west of the site.

Remedial Actions at Site:

The site was surveyed prior to expansion in order to separate the demolition fill area from the area identified as containing hazardous materials.

Area of Concern Related to Site:

The average natural ground elevation is 435 to 440 feet with groundwater at a shallow depth. The alluvium underlying the river is one of the most important aquifers in the state. Consequently, if contamination is occuring from the landfill, it is threatening a vital aquifer resource.

General Geologic and Hydrologic Setting:

LOCATION: Longitude 90 26' 45"; latitude 38 46' 15", St. Charles Quadrangle.

The landfill has been in existance for more than twenty years. For most of that time period, landfilling has occurred on the Missouri River floodplain. Landfilling also has taken place in a limestone quarry

adjoining the floodplain landfill. The quarry is in the St. Louis Limestone which is present along the eastern slopes of the Missouri River floodplain.

The early portion of the landfill operation included excavation and filling below the floodplain and into the groundwater of the Missouri River aquifer. Subsequent landfill operations generally were confined to filling above the floodplain surface and also in the adjoining limestone quarry. Except where operational procedures cause outbreaks of leachate to occur in the quarry or runoff water to drain into the quarry, there was no evidence of significant amounts of groundwater from the alluvial aquifer entering the limestone. For the most part, the recharge, quite limited to begin with, would be from the bedrock adjoining the alluvium into the Missouri River aquifer rather than the aquifer recharging the surrounding bedrock.

Groundwater monitoring indicates contaminant movement into the alluvial aquifer in a generally northwesterly direction. However, such monitoring to date is inadequate to verify this indication or to adequately characterize the nature of the alluvial aquifer in the vicinity of the landfill.

The Missouri River floodplain sediments consist of 15 to 20 feet of silt loam to very silty clay having moderate to high permeability. The groundwater table occurs at depths of 15 to 20 feet below floodplain level. Fluctuations of 5 to 15 feet occur during periods of high water levels when there are prolonged wet seasons that affect the Missouri River. Local wet or dry periods cause little effect other than recharge directly through the landfill. This may be the most significant risk posed by the Westlake Landfill, the poor soil covering procedures that apparently occurred during landfill operation.

Beneath the silt loam, very silty clay surface soil of the alluvium, the Missouri River alluvial sediments are characterized by a general increase in grain size associated with increasing depth. The sand increase becomes noticeable at depths of 20 to 30 feet with the percentage of gravel beginning to occur at depths of 30 to 40 feet. These coarse sediments, plus the large and perennial recharge of the river, cause the alluvium to be one of the major and most important aquifers in the state. Consequently, if contamination is occurring from the landfill, it is threatening a vital aquifer resource.

Public Drinking Water Advisory:

There are no public water systems located in the immediate vicinity of Westlake Landfill. However, the site is less than one mile from the Missouri River, which is the water source for St. Louis County Water Company's North Plant. The intake for that plant is about eight miles downstream from Westlake Landfill. Should contamination from the site reach the Missouri River, the downstream public water system could be affected.

Private wells located near the landfill may also be susceptible to contamination.

Health Assessment:

The Westlake Landfill site has been found to be contaminated with 4000 tons of chlordane, trichloroethylene and toluene, and 7000 tons of low level uranium ore wastes.

Chlordane is a broad spectrum insecticide that has been observed to cause the following symptoms: blurred vision, confusion, ataxia, delirium, coughing, abdominal pain, nausea, vomiting, diarrhea, irritability, tremors, convulsions, anuria, and cancer in laboratory animals. It attacks the central nervous system, eyes, lungs, liver, kidneys, and skin. TCE or trichloroethylene is an animal carcinogen and is also capable of causing the following symptoms: irritation of the eyes, nose and throat; dermatitis; headache, dizziness, vertigo, tremors, nausea and vomiting, irregular heartbeat, sleepiness, fatigue, blurred vision, unconsciousness, and death. Damage occurs to the respiratory system, heart, liver, kidneys, and central nervous system. Toluene has been observed to cause irritation of the eyes, respiratory tract, and skin; dermatitis, headache, dizziness, fatigue, muscular weakness, drowsiness, lack of coordination, staggering gait, skin paresthesia, collapse and coma.

Uranium is reported to cause adverse health effects in two ways: toxic chemical effects including damage to the kidney and liver, pneumoconiosis, pronounced changes in the blood and generalized injury; and radiation effects including lung cancer, osteosarcoma, and lymphoma.

Analysis of the rates of fetal death, low birth weight, and malformations for 1972-1982 showed no rate for the area significantly higher than the state average.

A well survey and water sampling has been completed, and an exposure questionnaire is presently being administered to selected residents near the site. This investigation by the Missouri Department of Health has found there are only four wells still in use in the area that are downgradient from the site. One is used only occasionally and one is not used for potable water at all. None of the wells sampled had detectable amounts of any of the chemicals disposed of at the site. None of the residents questioned so far appeared to have any adverse health effects caused by materials disposed of at the site.

Based on available information, a health threat exists due to the toxic effects of chemicals and low level uranium wastes buried at the site, and the possibility that off-site migration of these materials might occur. While there is no evidence of past or present exposure, the potential for future exposure exists based on the possibility that off-site migration might occur. Sampling and corrective containment and diversion should continue at this site until risk to the public health can more accurately be determined.

Confirmed Abandoned or Uncontrolled Hazardous Waste Disposal Sites in Missouri

Fiscal Year 1987 Annual Report

MISSOURI DEPARTMENT OF NATURAL RESOURCES Division of Environmental Quality

WESTLAKE LANDFILL

Classification: Class III, Priority 14

Site Name: Westlake Landfill

Address: Bridgeton, MO 63042. Between Old Rock Hill Road and New

Rock Hill Road east of Earth City, St. Louis County

T 46 N, R 5 E, St. Charles Quadrangle

Waste Type: radionuclides

Quantity: 7000 tons of low level uranium ore wastes

Site Description:

The site is part of an active landfill on the Missouri River floodplain in St. Louis County.

Present Owner: Westlake Landfill, Inc.,

Bridgeton, MO 63042

Environmental Problems Related to Site:

The site is an active permitted landfill which in the past accepted 7000 tons of low level uranium ore wastes. Excavation at the site in the past reached the same depth as the groundwater. There is potential for contamination of groundwater and the Missouri River which is less than one mile away, directly west of the site.

Remedial Actions at Site:

The site was surveyed prior to expansion in order to separate the demolition fill area from the area identified as containing hazardous materials.

The Missouri Department of Natural Resources is the lead agency for this site.

Area of Concern Related to Site:

The average natural ground elevation is 435 to 440 feet with groundwater at a shallow depth. The alluvium underlying the river is one of the most important aquifers in the state. Consequently, if contamination is occurring from the landfill, it is threatening a vital aquifer resource.

General Geologic and Hydrologic Setting:

LOCATION: Longitude 90 26' 45"; latitude 38 46' 15", St. Charles Quadrangle.

The landfill has been in existence for more than twenty years. For most of that time period, landfilling has occurred on the Missouri River floodplain. Landfilling also has taken place in a limestone quarry adjoining the floodplain landfill. The quarry is in the St. Louis Limestone which is present along the eastern slopes of the Missouri River floodplain.

The early portion of the landfill operation included excavation and filling below the floodplain and into the groundwater of the Missouri River aquifer. Subsequent landfill operations generally were confined to filling above the floodplain surface and also in the adjoining limestone quarry. Except where operational procedures cause outbreaks of leachate to occur in the quarry or runoff water to drain into the quarry, there was no evidence of significant amounts of groundwater from the alluvial aquifer entering the limestone. For the most part, the recharge, quite limited to begin with, would be from the bedrock adjoining the alluvium into the Missouri River aquifer rather than the aquifer recharging the surrounding bedrock. Near the bedrock quarry pit, however, the potential exists for draining some alluvial water into this sump. Apparently, the pit is dewatered on a continuous basis with the water pumped to discharge in the alluvial setting. Groundwater monitoring indicates general movement of the alluvial groundwater to the west and north.

The Missouri River floodplain sediments consist of 15 to 20 feet of silt loam to very silty clay having moderate to high permeability. The groundwater table occurs at depths of 15 to 20 feet below floodplain level. Fluctuations of 5 to 15 feet occur during periods of high water levels when there are prolonged wet seasons that affect the Missouri River. Local wet or dry periods cause little effect other than recharge directly through the landfill. This may be the most significant risk posed by the Westlake Landfill, the poor soil covering procedures that apparently occurred during landfill operation.

Beneath the silt loam, very silty clay surface soil of the alluvium, the Missouri River alluvial sediments are characterized by a general increase in grain size associated with increasing depth. The sand increase becomes noticeable at depths of 20 to 30 feet with the percentage of gravel beginning to occur at depths of 30 to 40 feet. These coarse sediments, plus the large and perennial recharge of the river, cause the alluvium to be one of the major and most important aquifers in the state. Consequently, if contamination is occurring from the landfill, it is threatening a vital aquifer resource.

Public Drinking Water Advisory:

There are no public water systems located in the immediate vicinity of Westlake Landfill. However, the site is less than one mile from the Missouri River, which is the water source for St. Louis County Water Company's North Plant. The intake for that plant is about eight miles downstream from Westlake Landfill. Should contamination from the site reach the Missouri River, the downstream public water system could be affected.

Private wells located near the landfill may also be susceptible to contamination.

Health Assessment:

Uranium is reported to cause adverse health effects in two ways: toxic chemical effects including damage to the kidney and liver, pneumoconiosis, pronounced changes in the blood and generalized injury; and radiation effects including lung cancer, osteosarcoma, and lymphoma.

Analysis of the rates of fetal death, low birth weight, and malformations for 1972-1982 showed no rate for the area significantly higher than the state average.

An exposure assessment including a well survey, water sampling, and an administrative exposure questionnaire was completed for the site. This investigation by the Missouri Department of Health has found there are only four wells still in use in the area that are downgradient from the site. One is used only occasionally and one is not used for potable water at all. None of the residents questioned appeared to have any adverse health effects caused by materials disposed of at the site.

Based on available information, a health threat exists due to the effects of low level uranium wastes buried at the site, and the possibility that off-site migration of these materials might occur. While there is no evidence of past or present exposure, the potential for future exposure exists based on the possibility that off-site migration might occur. Sampling and corrective containment and diversion should continue at this site until risk to the public health can more accurately be determined.

NON 71,530

ORIGIN OF MATERIAL AND HISTORY OF LICENSE

1942-1966

BELGIN CONGO AND DOMESTIC URANIUM ORES PROCESSED AT MALLINCKRODT, INCORPORATED, AT DESTREHAN STREET FACILITY ON NORTH SIDE OF ST. LOUIS. AGREEMENT WITH U. S., BELGIANS WANTED ORE RESIDUES (DAUGHTERS) RETURNED. MATERIAL WAS HELD BY U. S., BUT NOT CLAIMED BY BELGIAN CONGO.

JANUARY 10, 1964

AEC-OAK RIDGE OPERATIONS OFFICE PUT OUT BID PACKAGE TO SELL, AS LISTED IN BID PACKAGE, TOTAL ORE RESIDUES OF 117,050 TONS OF RAFFINATE OR BARIUM SULFATE CAKE CONTAINING APPROXIMATELY 191 TONS OF URANIUM. THE 8700 TONS OF BASO₄ (LEACHED) CONTAINING 7 TONS OF URANIUM WAS ITEMIZED AS PART OF THIS PACKAGE.

EARLY 1966

CONTINENTAL MINING AND MILLING COMPANY, CHICAGO, ILLINOIS, LICENSE NO. SMA-862 PURCHASED FROM AEC-ORO. THE ORE RESIDUES WERE STORED AT ST. LOUIS AIRPORT. ORE RESIDUES WERE MOVED TO 9200 LATTY AVENUE, NAZELNOOD, MISSOURI.

DECENBER 29, 1966

LICENSE NO. SMC-907 WAS ISSUED TO COMMERCIAL DISCOUNT CORPORATION, CHICAGO, ILLINOIS ALLOWING FOR POSSESSION OF RESIDUES, REMOVAL OF MOISTURE, AND SHIPMENT TO COTTER CORPORATION IN CANON CITY, COLORADO.

J' 1RY 1967

CONTINENTAL MINING AND MILLING TERMINATED BUSINESS, COMMERCIAL DISCOUNT CORPORATION OF CHICAGO, ILLINOIS, TOOK PHYSICAL POSSESSION OF THE FACILITIES AND SOURCE MATERIAL STOCKPILE.

COTTER CORPORATION, CANON CITY, COLORADO, LICENSE NO. SUB-1022 PURCHASED REMAINING SOURCE MATERIAL AT LATTY AVENUE.

AUGUST TO

OCTOBER 1973

COTTER TRANSPORTED FROM THE LATTY AVENUE SITE 10,763,41 TONS OF RESIDUE BY RAIL TO CANON CITY, COLORADO. 48,544,70 TONS OF RESIDUE AND SOIL CONTAINING APPROXIMATELY SEVEN TONS OF NATURAL URANIUM WERE TRANSPORTED TO THE WEST LAKE LANDFILL SITE.

APRIL 10, 23, AND

REGION III INSPECTION AT HAZELWOOD, MISSOURI SITE AND CANON CITY, COLORADO OFFICE.

24, 1974

I'AY 10, 1974

LICENSEE SUBMITS FINAL SURVEY OF LATTY AVENUE SITE TO AEC LICENSING.

NOVEMBER 1, 1974

FINDINGS OF APRIL, 1974 INSPECTION BY REGION III ARE SENT BY LETTER FROM AEC HEADQUARTERS TO COTTER CORPORATION ADVISING THAT DILUTION AND DISPOSAL OF ORE RESIDUES ARE NOT IN KEEPING WITH INTENT OF PART 20. NO ITEMS OF NONCOMPLIANCE.

NOVEYBER 13, 1974

AEC LICENSING TERMINATED LICENSE NO. SUB-1002.

INSPECTION HISTORY

DATES.	LICENSEE	FINDINGS
MAY 16, 17, AND AUGUST 4,	CONTINENTAL MINING & MILLING COMPANY LICENSE NO. SMA-862	5 ITEMS OF NONCOMPLAINCE RE: INADEQUATE POSTING, INADEQUATE SURVEYS & PERMISSIBLE LEVEL OF RADIATION IN UNRESTRICTED AREAS
JANUARY 11, 1967	COMMERCIAL DISCOUNT CORPORATION LICENSE NO. SMC-907	2 ITEMS OF NONCOMPLIANCE RE: PERMISSIBLE LEVELS OF RADIATION IN UNRESTRICTED AREAS AND INADEQUATE POSTING
MARCH 27 AND APRIL 1, 1968	COMMERCIAL DISCOUNT CORPORATION LICENSE NO. SMC-907	2 ITEMS OF NONCOMPLIANCE RE: PERMISSIBLE LEVELS OF RADIATION IN UNRESTRICTED AREAS AND INADEQUATE SURVEYS
NOVETBER 17, 1979	COTTER CORPORATION LICENSE NO. SUB-1022	ONE ITEM OF NONCOMPLIANCE RE: INADEQUATE SURVEYS
APRIL 10, 23, & 24, 1974	COTTER CORPORATION LICENSE NO. SUB-1022	DISPOSAL OF URANIUM BY DILUTION AND BURIAL ARE NOT IN KEEPING WITH INTENT OF AEC REGULATIONS. NOT CITED AS A NONCOMPLIANCE

CONCLUSIONS OF JUNE 22-24, AUGUST 11, 1976 INVESTIGATION

- 1. THE REMAINING ORE RESIDUES AT LATTY AVENUE SITE WERE MIXED WITH SOIL TRANSPORTED TO THE WEST LAKE LANDFILL AS REPORTED BY THE LICENSEE DURING THE APRIL, 1974 INSPECTION. HOWEVER, THE RESIDUE-SOIL MIXTURE IS COVERED BY APPROXIMATELY 3 FEET OF FILL AT WEST LAKE LANDFILL INSTEAD OF 100 FEET AS REPORTED BY THE LICENSEE.
- 2. ENVIRONMENTAL SOIL SAMPLES INDICATE THE PRESENCE OF URANIUM ORE PROCESS RESIDUES REMAINING AT THE LATTY AVENUE SITE. BETA-GAMMA SURVEYS PERFORMED BY RIII PERSONNEL AT THAT SITE ON AUGUST 11, 1976 INDICATE LEVELS OF RADIATION IN CERTAIN AREAS EXCEEDING THE CRITERIA ESTABLISHED BY THE NRC FOR DECONTAMINATION OF LAND AREAS PRIOR TO RELEASE FOR UNRESTRICTED USE.
- 3. BASED ON RADIATION MEASUREMENTS OF THE MATERIAL PRESENT AT THE WEST LAKE LANDFILL AND THE LATTY AVENUE SITE NEITHER LOCATION PRESENTS AN IMMEDIATE RADIOLOGICAL HEALTH HAZARD TO THE PUBLIC.

RECOMMENDATIONS

A MORE DETAILED ENVIRONMENTAL EVALUATION OF THE LATTY AVENUE AND THE WEST -- LAKE LAND FILL SITES SHOULD BE PERFORMED.

OAK RIDGE NATIONAL LABORATORY TO PERFORM THIS EVALUATION. ANY RECOMMENDATIONS WILL BE BASED ON THE OAK RIDGE EVALUATION.

United States Government (Manhattan Project) **Chronology of Radioactive Waste** at West Lake Landfill 1942 - 1945 Mallinckrodt (nuclear processing plant) Destrehan Street, City of St. Louis 1966 **Nuclear Regulatory Commission** (formerly Atomic Energy Commission) February, 1966 Continental Mining & Milling Co. 1967 Commercial Discount Corp. December, 1969 **Cotter Corporation** (a subsidiary of Commonwealth Edison) 1969? B & K Construction Co., Inc.

July-October, 1973

West Lake Landfill

Exhibit 23-B